215 research outputs found

    Release of tryptophan and serotonin into the portal vein of the isolated perfused rat small intestine

    Full text link
    To investigate the release of serotonin from intestinal enterochromaffin cells, we used an in vitro technique which allows studies excluding overlapping influences from outside the gut. The entire small intestine of rats fed a standard or tryptophan-enriched (3% of total) diet was totally isolated by ligatures with the exception of the superior mesentric artery and portal vein that supply and drain the intestine. Simultaneously to the vascular perfusion (Krebs-Ringer bicarbonate buffer, 0,4% human albumin, 5 m M glucose, 0.6 m M glutamine) the gut lumen was infused (buffer or 0.1 N HCL). Acidification of the gut lumen resulted in an increment of venously released tryptophan and serotonin. After feeding tryptophan-enriched food the release of tryptophan was increased. However, the total amount of released serotonin after tryptophan diet did not differ as compared to that after standard diet. Addition of a monoamino-oxidase inhibitor (pargyline) to the arterial perfusate enhanced the released amount of serotonin 3-fold in the portal venous effluent (at a concentration of 1 m M but not 0.1 m M ). Recovery studies done by arterial infusions of serotonin (1 µ M , 10µ M ) and evaluation of the amounts venously released revealed a high loss of infused serotonin (40%–70%). Our data suggest gut-born serotonin to more likely play a paracrine role than a role as a classical hormone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47538/1/433_2005_Article_BF01852260.pd

    Global scaling of the heat transport in fusion plasmas

    Get PDF

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF

    Neutral pathways and heat flux widths in vertical- and horizontal-target EDGE2D-EIRENE simulations of JET

    Get PDF
    This paper further analyses the EDGE2D-EIRENE simulations presented by Chankin et al (2017 Nucl. Mater. Energy 12 273), of L-mode JET plasmas in vertical-vertical (VV) and Vertical-horizontal (VH) divertor configurations. As expected, the simulated outer divertor ionisation source peaks near the separatrix in VV and radially further out in VH. We identify the reflections of recycled neutrals from lower divertor tiles as the primary mechanism by which ionisation is concentrated on the outer divertor separatrix in the VV configuration. These lower tile reflection pathways (of neutrals from the outer divertor, and to an even greater extent from the inner divertor) dominate the outer divertor separatrix ionisation. In contrast, the lower-tile-reflection pathways are much weaker in the VH simulation and its outer divertor ionisation is dominated by neutrals which do not reflect from any surfaces. Interestingly, these differences in neutral pathways give rise to strong differences in the heat flux density width λq at the outer divertor entrance: λq = 3.2 mm in VH compared to λq = 11.8 mm in VV. In VH, a narrow channel exists in the near scrape-off-layer (SOL) where the convected heat flux, driven by strong Er × B flow and thermoelectric current, dominates over the conducted heat flux. The width of this channel sets λq and is determined by the radial distance between the separatrix and the ionisation peak in the outer divertor
    corecore