755 research outputs found

    Recoil-Ion and Electron Momentum Spectroscopy: Reaction-Microscopes

    No full text
    Recoil-ion and electron momentum spectroscopy is a rapidly developing technique that allows one to measure the vector momenta of several ions and electrons resulting from atomic or molecular fragmentation. In a unique combination, large solid angles close to 4 and superior momentum resolutions around a few per cent of an atomic unit (a.u.) are typically reached in state-of-the art machines, so-called reaction-microscopes. Evolving from recoil-ion and cold target recoil-ion momentum spectroscopy (COLTRIMS), reaction-microscopes—the `bubble chambers of atomic physics'—mark the decisive step forward to investigate many-particle quantum-dynamics occurring when atomic and molecular systems or even surfaces and solids are exposed to time-dependent external electromagnetic fields. This paper concentrates on just these latest technical developments and on at least four new classes of fragmentation experiments that have emerged within about the last five years. First, multi-dimensional images in momentum space brought unprecedented information on the dynamics of single-photon induced fragmentation of fixed-in-space molecules and on their structure. Second, a break-through in the investigation of high-intensity short-pulse laser induced fragmentation of atoms and molecules has been achieved by using reaction-microscopes. Third, for electron and ion-impact, the investigation of two-electron reactions has matured to a state such that the first fully differential cross sections (FDCSs) are reported. Fourth, comprehensive sets of FDCSs for single ionization of atoms by ion-impact, the most basic atomic fragmentation reaction, brought new insight, a couple of surprises and unexpected challenges to theory at keV to GeV collision energies. In addition, a brief summary on the kinematics is provided at the beginning. Finally, the rich future potential of the method is briefly envisaged

    Three-body Interactions In Proton-helium Angular Scattering

    Get PDF
    H++He scattering at 0.5 MeV has been investigated using a coincidence technique that completely determines the three-body transverse momentum exchange in single ionization collisions. Three scattering regions could be distinctly recognized that are dominated by proton helium-nucleus, proton-electron, or electron helium-nucleus interactions. Calculations and the experimental data show that the coupling between the electronic and nuclear degrees of freedom is required to understand the dynamics for more than 97% of the ionizing collisions. © 1989 The American Physical Society

    NF-κB activation protects oligodendrocytes against inflammation

    Get PDF
    NF-κB is a key player in inflammatory diseases, including multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). However, the effects of NF-κB activation on oligodendrocytes in MS and EAE remain unknown. We generated a mouse model that expresses IκBαΔN, a super-suppressor of NF-κB, specifically in oligodendrocytes and demonstrated that IκBαΔN expression had no effect on oligodendrocytes under normal conditions (both sexes). Interestingly, we showed that oligodendrocyte-specific expression of IκBαΔN blocked NF-κB activation in oligodendrocytes and resulted in exacerbated oligodendrocyte death and hypomyelination in young, developing mice that ectopically express IFN-γ in the CNS (both sexes). We also showed that NF-κB inactivation in oligodendrocytes aggravated IFN-γ-induced remyelinating oligodendrocyte death and remyelination failure in the cuprizone model (male mice). Moreover, we found that NF-κB inactivation in oligodendrocytes increased the susceptibility of mice to EAE (female mice). These findings imply the cytoprotective effects of NF-κB activation on oligodendrocytes in MS and EAE

    Analysis of a functional serotonin transporter promoter polymorphism in psoriasis vulgaris

    Get PDF
    Serotonin is a monoamine acting as a neuromediator in the central and peripheral nervous system. Recently, serotonin has also been shown to influence T- and B-cell function. The serotonin transporter is central in the regulation of the serotonergic system and widely expressed on cells of the immune system. A functional length polymorphism in the promoter of the serotonin transporter gene (5-HTTLPR) has been implicated in the genetic background of depression. Psoriasis is a complex disease with a polygenetic inheritance. In light of the role of T-cell mediated inflammation in psoriasis and the increased prevalence of depression in psoriatic patients, we analyzed the 5-HTTLPR polymorphism in 309 patients with psoriasis vulgaris and 315 healthy control individuals. No significant differences in genotype distribution and allele frequencies were found. There was also no difference in the score of the Hamilton Rating Scale for Depression in patients with psoriasis (n = 137) characterized by carriage of different 5-HTTLPR genotypes. These findings argue against a major contribution of the 5-HTTLPR polymorphism to psoriasis susceptibility and the occurrence of depressive symptoms among psoriatic patients

    Deficiency in IκBα in the intestinal epithelium leads to spontaneous inflammation and mediates apoptosis in the gut

    Get PDF
    The IκB-Kinase (IKK)-NF-κB signalling pathway plays a multifaceted role in inflammatory bowel disease (IBD): on the one hand, it protects from apoptosis; on the other, it activates transcription of numerous inflammatory cytokines and chemokines. Although several murine models of IBD rely on disruption of IKK-NF-κB signalling, these involve either knockouts of a single family-member of NF-κB, or of upstream kinases that are known to have additional, NF-κB-independent, functions. This has made the distinct contribution of NF-κB to homeostasis in intestinal epithelium cells difficult to assess. To examine the role of constitutive NF-κB activation in intestinal epithelial cells, we generated a mouse model with a tissue-specific knockout of the direct inhibitor of NF-κB, Nfkbia/IκBα. We demonstrate that constitutive activation of NF-κB in intestinal epithelial cells induces several hallmarks of IBD including increased apoptosis, mucosal inflammation in both the small intestine and the colon, crypt hyperplasia, and depletion of Paneth cells, concomitant with aberrant Wnt signalling. To determine which NF-κB-driven phenotypes are cell-intrinsic, and which are extrinsic and thus require the immune compartment, we established a long-term organoid culture. Constitutive NF-κB promoted stem-cell proliferation, mis-localisation of Paneth cells, and sensitisation of intestinal epithelial cells to apoptosis in a cell-intrinsic manner. Increased number of stem cells was accompanied by a net increase in Wnt activity in organoids. Because aberrant Wnt signalling is associated with increased risk of cancer in IBD patients and because NFKBIA has recently emerged as a risk locus for IBD, our findings have critical implications for the clinic. In a context of constitutive NF-κB, our findings imply that general anti-inflammatory or immunosuppressive therapies should be supplemented with direct targeting of NF-κB within the epithelial compartment in order to attenuate apoptosis, inflammation, and hyperproliferation

    The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.Peer Reviewe

    Strong-field control of the dissociative ionization of N2O with near-single-cycle pulses

    Get PDF
    The dissociative ionization of N2O by near-single-cycle laser pulses is studied using phase-tagged ion-ion coincidence momentum imaging. Carrier-envelope phase (CEP) dependences are observed in the absolute ion yields and the emission direction of nearly all ionization and dissociation pathways of the triatomic molecule. We find that laser-field-driven electron recollision has a significant impact on the dissociative ionization dynamics and results in pronounced CEP modulations in the dication yields, which are observed in the product ion yields after dissociation. The results indicate that the directional emission of coincident N+ and NO+ ions in the denitrogenation of the dication can be explained by selective ionization of oriented molecules. The deoxygenation of the dication with the formation of coincident N-2(+) + O+ ions exhibits an additional shift in its CEP dependence, suggesting that this channel is further influenced by laser interaction with the dissociating dication. The experimental results demonstrate how few-femtosecond dynamics can drive and steer molecular reactions taking place on (much) longer time scales

    FIRE-the Frankfurt Ion stoRage Experiments

    Get PDF
    Abstract Existing electrostatic storage rings have proven to be a valuable tool for molecular and atomic physics in the low-energy regime. At the new Stern-Gerlach Center of Frankfurt University a small machine for ion energies up to 50 keV will be build up. It will serve as a tool to analyze the structure and dynamics of many particle systems from atoms to complex organic biomolecules. It will be possible to prepare the particle beams of interest in novel and unique ways. In direct comparison to traditional setups, the luminosity of the measurements will be improved by many orders of magnitude. In combination with the newest reaction microscopes, the F rankfurt Ion stoRage Experiments (FIRE) will allow analysis of many particle fragmentation processes of atoms and molecules with unrivaled resolution and completeness. In contrast to experiments with traps, an electrostatic storage ring has the advantage of being able to record the momenta of all neutral fragments. This paper gives an overview of the design parameters, the optical elements used and the project status.
    • …
    corecore