301 research outputs found

    UCP3 in muscle wasting, a role in modulating lipotoxicity?

    Get PDF
    AbstractUCP3 has been postulated to function in the defense against lipid-induced oxidative muscle damage (lipotoxicity). We explored this hypothesis during cachexia in rats (zymosan-induced sepsis), a condition characterized by increased oxidative stress and supply of fatty acids to the muscle. Muscle UCP3 protein content was increased 2, 6 and 11 days after zymosan injection. Plasma FFA levels were increased at day 2, but dropped below control levels on days 6 and 11. Muscular levels of the lipid peroxidation byproduct 4-hydroxy-2-nonenal (4-HNE) were increased at days 6 and 11 in zymosan-treated rats, supporting a role for UCP3 in modulating lipotoxicity during cachexia

    Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly

    Get PDF
    Satellite cells (SC) are essential for skeletal muscle growth and repair. As sarcopenia is associated with type II muscle fiber atrophy, we hypothesized that SC content is specifically reduced in the type II fibers in the elderly. A total of 8 elderly (E:76+/-1y) and 8 young (Y:20+/-1y) healthy males were selected. Muscle biopsies were collected from the vastus lateralis in both legs. ATPase staining and a pax7-antibody were used to determine fiber type specific SC content (i.e. pax7-positive SC) on serial muscle cross-sections. In contrast to the type I fibers, the proportion and mean cross-sectional area of the type II fibers were substantially reduced in the E versus the Y. The number of SC per type I fiber was similar in E and Y. However, the number of SC per type II fiber was substantially lower in the E versus the Y (0.044+/-0.003 vs 0.080+/-0.007; P<0.01). In addition, in the type II fibers the number of SC relative to the total number of nuclei and the number of SC per fiber area were also significantly lower in the E. This study is the first to show type II fiber atrophy in the elderly to be associated with a fiber type specific decline in SC content. The latter is evident when SC content is expressed per fiber or per fiber area. The decline in SC content might be an important factor in the etiology of type II muscle fiber atrophy, which accompanies the loss of skeletal muscle with aging. Key words: skeletal muscle, sarcopenia, muscle stem cells, atrophy, metabolism

    An improved nearest neighbor method for the estimation of the gamma photon entry point in monolithic scintillator detectors for PET

    Get PDF
    Several improvements of the k-nearest neighbor (k-NN) method for the determination of the entry point (x, y) of a gamma photon in a monolithic scintillator PET detector have been investigated with the aim to obtain better spatial resolution and/or to enable faster detector calibration by reducing the amount of required reference data and by allowing for calibrating with a line source. These methods were tested on a dataset measured with a SiPM-array-based monolithic LYSO detector. It appears that 10% to 25% better spatial resolution can be obtained compared to the standard approach. Moreover, some of the improved methods using two orders of magnitude less reference data, yield essentially the same spatial resolution as the standard method, which reduces the time needed for calibration as well as entry point computation. Finally, line source calibration is shown to be possible with some of the methods, yielding better results than the standard method and allowing much faster and easier collection of the reference data.</p

    Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph

    Full text link
    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2 x 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2 x 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of \approx 0.170 ns for 15 cm axial field-of-view (AFOV) and \approx 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.Comment: To be published in Phys. Med. Biol. (26 pages, 17 figures

    One-Step Agrobacterium Mediated Transformation of Eight Genes Essential for Rhizobium Symbiotic Signaling Using the Novel Binary Vector System pHUGE

    Get PDF
    Advancement in plant research is becoming impaired by the fact that the transfer of multiple genes is difficult to achieve. Here we present a new binary vector for Agrobacterium tumefaciens mediated transformation, pHUGE-Red, in concert with a cloning strategy suited for the transfer of up to nine genes at once. This vector enables modular cloning of large DNA fragments by employing Gateway technology and contains DsRED1 as visual selection marker. Furthermore, an R/Rs inducible recombination system was included allowing subsequent removal of the selection markers in the newly generated transgenic plants. We show the successful use of pHUGE-Red by transferring eight genes essential for Medicago truncatula to establish a symbiosis with rhizobia bacteria as one 74 kb T-DNA into four non-leguminous species; strawberry, poplar, tomato and tobacco. We provide evidence that all transgenes are expressed in the root tissue of the non-legumes. Visual control during the transformation process and subsequent marker gene removal makes the pHUGE-Red vector an excellent tool for the efficient transfer of multiple genes

    Partial hexokinase II knockout results in acute ischemia-reperfusion damage in skeletal muscle of male, but not female, mice

    Get PDF
    Cellular studies have demonstrated a protective role of mitochondrial hexokinase against oxidative insults. It is unknown whether HK protective effects translate to the in vivo condition. In the present study, we hypothesize that HK affects acute ischemia–reperfusion injury in skeletal muscle of the intact animal. Male and female heterozygote knockout HKII (HK(+/-)), heterozygote overexpressed HKII (HK(tg)), and their wild-type (WT) C57Bl/6 littermates mice were examined. In anesthetized animals, the left gastrocnemius medialis (GM) muscle was connected to a force transducer and continuously stimulated (1-Hz twitches) during 60 min ischemia and 90 min reperfusion. Cell survival (%LDH) was defined by the amount of cytosolic lactate dehydrogenase (LDH) activity still present in the reperfused GM relative to the contralateral (non-ischemic) GM. Mitochondrial HK activity was 72.6 ± 7.5, 15.7 ± 1.7, and 8.8 ± 0.9 mU/mg protein in male mice, and 72.7 ± 3.7, 11.2 ± 1.4, and 5.9 ± 1.1 mU/mg in female mice for HK(tg), WT, and HK(+/-), respectively. Tetanic force recovery amounted to 33 ± 7% for male and 17 ± 4% for female mice and was similar for HK(tg), WT, and HK(+/-). However, cell survival was decreased (p = 0.014) in male HK(+/-) (82 ± 4%LDH) as compared with WT (98 ± 5%LDH) and HK(tg) (97 ± 4%LDH). No effects of HKII on cell survival was observed in female mice (92 ± 2% LDH). In conclusion, in this mild model of acute in vivo ischemia–reperfusion injury, a partial knockout of HKII was associated with increased cell death in male mice. The data suggest for the first time that HKII mediates skeletal muscle ischemia–reperfusion injury in the intact male animal

    Sub-3mm spatial resolution from a large monolithic LaBr3 (Ce) scintillator

    Get PDF
    Abstract A Compton camera prototype for ion beam range monitoring via prompt (< 1 ns) gamma detection in hadron therapy is being developed and characterized at the Medical Physics Department of LMU Munich. The system consists of a large (50x50x30 mm3) monolithic LaBr3(Ce) scintillation crystal as absorber component to detect the multi-MeV Compton scattered photons, together with a stack of 6 double-sided silicon strip detectors (DSSSD) acting as scatterer component. Key ingredient of the γ-source reconstruction is the determination of the γ-ray interaction position in the scintillator, which is read out by a 256-fold segmented multi-anode photomultiplier tube (PMT). From simulations an angular resolution of about 1.5o for the photon source reconstruction can be expected for the energy range around 3 – 5 MeV, provided that a spatial resolution of 3 mm can be reached in the absorbing scintillator [1]. Therefore, particular effort was dedicated to characterize this latter property as a function of the γ-ray energy. Intense, tightly collimated 137Cs and 60Co photon sources were used for 2D irradiation scans (step size 0.5 mm) as prerequisite for studying the performance of the "k-Nearest-Neighbors" algorithm developed at TU Delft [2] (together with its variant "Categorical Average Pattern", CAP) and extending its applicability into the energy range beyond the original 511 keV. In this paper we present our most recent interaction position analysis in the absorbing scintillator, leading to a considerably improved value for the spatial resolution: systematic studies were performed as a function of the k-NN parameters and the PMT segmentation. A trend of improving spatial resolution with increasing photon energy was confirmed, resulting in the realization of the presently optimum spatial resolution of 2.9(1) mm @1.3 MeV, thus reaching the design specifications of the Compton camera absorber. The specification goal was reached also for a reduced PMT segmentation of 8x8 anode segments (each with 6x6 mm2 active area), thus allowing to reduce the complexity of the signal processing while preserving the performance
    corecore