60 research outputs found

    On the limiting mechanism of irradiation enhancement of I/sub c/

    Get PDF
    Irradiation may significantly increase I/sub c/ in HTS. A systematic pattern occurs: R=I/sub c/(afterirr.)/I/sub c/(beforeirr.) increases at low defect density, d. It reaches a peak, and then it falls below 1 at high d. The pinning center mechanism, which causes R to increase, has been extensively studied. The falloff in R has not. It has been considered a secondary effect. Here, we will show that the fall-off plays an important role in determining the maximum I/sub c/ enhancement achievable. A phenomenological model to describe the R-vs.-d curve, over the entire d range, is proposed. The idea is that R is the product of two competing effects. (i) Irradiation damage acts as pinning centers, hence increases critical current density, J/sub c/. (ii) Damage reduces the flow-area. Hence, it decreases the net critical current. Data on U/n processed Bi-2223 tapes are fitted to this model. The fitting indicates: (1) the reduction of the flow-area accounts for the majority of the R falloff; and (2) It is sufficient to describe J/sub c/ enhancement as linear with d, and it depending on field and temperature only through the ratio b=B/B/sub irr/, where B/sub irr/ is the irreversible field before irradiation

    Improved in-field behaviour of uranium doped BiSCCO tapes by enhanced flux pinning

    Get PDF
    Uranium doped BiSCCO 2223 tapes were irradiated by thermal neutrons. The resulting fission-induced defects improve flux pinning and shift the irreversibility line to higher fields. Significant enhancements of the transport critical current density as well as a reduction of the Jc-anisotropy are found for the irradiated samples. Furthermore, inter- and intragranular critical current densities were determined from the remanent magnetic moments by SQUID magnetometry

    A novel approach for x-ray scattering experiments in magnetic fields utilizing trapped flux in type-II superconductors

    Get PDF
    We introduce a novel approach to x-ray scattering studies in applied magnetic fields by exploiting vortices in superconductors. This method is based on trapping magnetic flux in a small disk-shaped superconductor (known as a trapped field magnet, TFM) with a single-crystal sample mounted on or at close proximity to its surface. This opens an unrestricted optical access to the sample and allows magnetic fields to be applied precisely along the x-ray momentum transfer, facilitating polarization-sensitive experiments that have been impractical or impossible to perform to date. The TFMs used in our study remain stable and provide practically uniform magnetic fields for days, which are sufficient for comprehensive x-ray diffraction experiments, specifically x-ray resonance exchange scattering (XRES) to study field-induced phenomena at a modern synchrotron source. The TFM instrument has been used in a “proof-of-principle” XRES study of a meta-magnetic phase in a rare-earth compound, TbNi2Ge2, in order to demonstrate its potential

    On the limiting mechanism of irradiation enhancement of I/sub c/

    Full text link

    Improved in-field behaviour of uranium doped BiSCCO tapes by enhanced flux pinning

    Full text link

    Studies of Radiation-Induced Pinning Centers and Persistent Magnetic Field Based on Y(1)Ba(2)Cu(3)O(7) Superconductor Materials

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Myocardial inflammation and energetics by cardiac MRI : a review of emerging techniques

    Get PDF
    The role of inflammation in cardiovascular pathophysiology has gained a lot of research interest in recent years. Cardiovascular Magnetic Resonance has been a powerful tool in the non-invasive assessment of inflammation in several conditions. More recently, Ultrasmall superparamagnetic particles of iron oxide have been successfully used to evaluate macrophage activity and subsequently inflammation on a cellular level. Current evidence from research studies provides encouraging data and confirms that this evolving method can potentially have a huge impact on clinical practice as it can be used in the diagnosis and management of very common conditions such as coronary artery disease, ischaemic and non-ischaemic cardiomyopathy, myocarditis and atherosclerosis. Another important emerging concept is that of myocardial energetics. With the use of phosphorus magnetic resonance spectroscopy, myocardial energetic compromise has been proved to be an important feature in the pathophysiological process of several conditions including diabetic cardiomyopathy, inherited cardiomyopathies, valvular heart disease and cardiac transplant rejection. This unique tool is therefore being utilized to assess metabolic alterations in a wide range of cardiovascular diseases. This review systematically examines these state-of-the-art methods in detail and provides an insight into the mechanisms of action and the clinical implications of their use
    corecore