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On the Limiting Mechanism of
Irradiation Enhancement ofIc

Alberto Gandini, Roy Weinstein, Drew Parks, Ravi P. Sawh, and Shi Xue Dou

Abstract—Irradiation may significantly increase in HTS. A
systematic pattern occurs: = (after irr ) (before irr ) in-
creases at low defect density, . It reaches a peak, and then it falls
below 1 at high .

The pinning center mechanism, which causes to increase, has
been extensively studied. The falloff in has not. It has been con-
sidered a secondary effect.

Here, we will show that the fall-off plays an important role in
determining the maximum enhancement achievable.

A phenomenological model to describe the -vs.- curve, over
the entire range, is proposed. The idea is that is the product
of two competing effects. (i) Irradiation damage acts as pinning
centers, hence increases critical current density, . (ii) Damage
reduces the flow-area. Hence, it decreases the net critical current.

Data on U/n processed Bi-2223 tapes are fitted to this model.
The fitting indicates: (1) the reduction of the flow-area accounts
for the majority of the falloff; and (2) It is sufficient to describe

enhancement as linear with , and it depending on field and
temperature only through the ratio = irr, where irr is
the irreversible field before irradiation.

Index Terms—Critical current density, high temperature super-
conductors, pinning centers, radiation effects.

I. INTRODUCTION

OVER the past decade, the effects of radiation on HTS have
been extensively studied. Two main lines of research can

be identified.
On one hand, there are studies [1]–[5] on the morphology of

the defects, the behavior of the HTS critical temperature,,
and the HTS normal state resistivity, and their dependence upon
irradiation dose and energy. These studies show that amorphous
regions are randomly positioned within the HTS, and that radi-
ation-induced defects decrease.

On the other hand, interest is focused on interaction between
vortices and radiation-damage, and the enhancement ofby
the irradiation-induced pinning centers [6]–[8].

These studies show that a systematic pattern occurs: irradi-
ation increases at low radiation-induced defect density,.
Then, enhancement saturates, it reaches a peak, and then it
falls-off below the pre-irradiation values at high.
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The fall-off is usually attributed mostly to the reduction of
, and the fall-off at high has been considered as an inevitable

secondary effect. For this reason, most of the studies have been
carried at low radiation fluence, below the peak ofattainable.

Recently, we began to address this matter [9], and realized
that to further improve a deeper understanding of the mech-
anisms that limit enhancement, causing to fall-off, is of
fundamental importance. In particular, it would be valuable to
be able to quantify this effect.

In this paper, we begin to address the following questions.
What causes to decrease at high fluence? Can the decrease
be quantify and directly related to the type and energy of the
radiation? Is there a way that may be increased above the
today’s limit [10]?

Section II describes the experimental set-up of an experiment
on Ag/Bi-2223 tapes. In Section III, the enhancement in U/n
Ag/Bi-2223 tapes processed with fission-ions (U/n process) is
presented. These data serve as a starting point of a phenomeno-
logical model proposed in Section IV. This model is fitted to
the data; the results are discussed in Section V. Conclusions are
drown in Section VI.

II. EXPERIMENTAL SET-UP

We applied the U/n process [11] to Ag/Bi-2223 tape [12].
In the U/n process, uranium U is added to the HTS pre-
cursor powder. After processing by PIT process [13], samples
are irradiated with thermal neutrons. Through thermal neutron
irradiation some of the U atoms fission [14]. Fission prod-
ucts create short quasicolumnar defects, circa 2.7m long and
3.8 nm in diameter [9], [11] (3.8 nm is the diameter of the amor-
phous area, the net damaged area is about twice the amorphous
one). The quasicolumnar defects act as pinning centers and im-
prove [9], [11], [12], [15].

In this experiment, uranium was added in several concentra-
tions: 0.15%, 0.4%, 0.6%, and 1.0% by wt. of UO. The thermal
neutron fluences used ranged over 2 orders of magnitude, from
3.12 10 to 3.62 10 n/cm . The density of fission frag-
ments density, cm , is given by:

(1)

where is the thermal neutron fluence,is the percent weight
of U, is the U fission cross section, g/cm is
the Bi-2223 density, is the Avogadro’s number, andis the

U atomic mass. From the above equation the fission fragment
density is found to range between:5 to 6 cm .

The critical current, , was measured by means of the four-
point technique. Each sample was measured, before and after ir-
radiation, at temperatures between 65 K and 77 K, and up to 5 T
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Fig. 1. R vs. fission fragment density,d. T = 74 K. Magnetic field is applied
parallel to tape surface, and it varies; magnetic field values are shown in inset. It
is seen thatR increases at low density, and then it decreases.R increases with
B. The standard deviation ofd is�10%, whereas the standard deviation ofR

is�20%. Note that they-axis is a log scale, which makes the peak appears less
evident that it is in a linear scale plot.

magnetic fields. Magnetic field was applied parallel and perpen-
dicular to the tape surface. Here,is defined by the 1 V/cm
criterion.

III. EXPERIMENTAL DATA

The average at 77 K, zero applied field, before irradiation
was 22 A. This corresponded to a critical current density,, of

2 A/cm . The standard deviation of was within 10%
[9]. Let now define the ratio: (after)/ (before), where

(after)and (before)are the critical currents after and before
irradiation, respectively. is a function of fission fragment den-
sity, magnetic field, , and temperature,. Figs. 1 and 2 show
a typical behavior of the -vs.- curve. In Fig. 1, is plotted
versus the fission fragment density for varying applied magnetic
fields at K. In Fig. 2, is plotted versus the fission frag-
ment density for varying temperatures at T. Over the
entire range of and investigated, all -vs.- curves show
the same behavior. The data collected may be phenomenologi-
cally described as follows. (1) At all temperatures and applied
fields, there is a clear peak in. (2) The fission fragment den-
sity at which peaks, , increases with and . (3) The
height of the peak, , depends on and . In particular,

increases, in first approximation, exponentially with
and .

The fall-off shown in Figs. 1 and 2 is not only typical of the
U/n process, but also observed in other radiation experiments
[7]. Although, most data we found in the literature are in the
low range of defect density, cm [7], [8].

IV. PHENOMENOLOGICAL MODEL

It has been broadly noted in the literature thatfall-off is
due to reduction of the superconducting order parameter as in-
dicated by a lowering of after irradiation [8]. Since the super-
conducting order parameter is a monotonic decreasing function
of the ratio [6], its degradation due to the irradia-
tion damage is larger at highthen at low . We note that if [8]
is the case also the fall-off should be larger at high temper-
ature than at low temperature. However, by comparing the rate

Fig. 2. R vs. fission fragment density,d. A magnetic field of 0.4 T is applied
perpendicular to the tape surface. Temperature varies; temperature values are
shown in inset.R increases withT . It is seen thatR increases at low density, and
then it decreases. The standard deviation ofd is�10%, whereas the standard
deviation ofR is�20%.

of fall-off, we observed that it is independent of the temper-
ature. Furthermore, in the U/n process,is reduced by only

2 K K at cm [12], and this is insufficient to
account for the observed fall-off. We take these observations as
an indication that, in the range of investigation, the reduction in

does not play a major role in the fall-off, and some other
phenomena must be responsible for it.

To begin, we make the simple observation that
, where is the flow-area (active area of the HTS through

which the supercurrent flows). Radiation defects are nonsuper-
conducting regions [1]–[4], Thus the presence of radiation-in-
duced defects reduce the active flow-area. Because of the sto-
chastic nature of the location of the damage, the percentage of
undamaged flow-area is , where is the volume
of a single irradiation-induced defect.

In order to quantify the fall-off, we seek a phenomenological
expression, which may capture, in a simple way, both the in-
crease and the fall-off of . We used:

(2)

Where, and are two parameters to be determined
experimentally by fitting the data.

V. DISCUSSION

The solid curves shown in Figs. 1 and 2, are obtained by fit-
ting (2) to the data. The values of the parameter, and
for the best fitting curves were obtained by the process of least
squares.

A. The Parameter

The parameter was found to be independent onand ,
across the entire range of and . In other words, the value
of , in all curves shown in Figs. 1 and 2, is about the same.
The mean value of was 4.1 10 cm , with standard devi-
ation of 28 . This finding supports the above hypothesis of

fall-off being related to volume of the irradiation-induced de-
fects. To check this hypothesis, we shall now computeand
compare it to the fitting parameter.
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First, we note that the volume, , of a single irradiation-in-
duced defect, over which superconductivity is suppressed, is not
merely the amorphous part of the defect. In fact, superconduc-
tivity is not fully restored until a distance of the order of the
coherence length, [16], away from a nonsuperconducting re-
gion. Therefore, the volume over which superconductivity is de-
stroyed is larger than just the geometric volume of the irradia-
tion-induced damage. Herein, we consider ,
where is the coherence length (in Bi-2223, nm at

K [17]), and is the quasicolumnar defect length2.7 m ,
nm is the diameter of a fission fragment defect [10].

Using the above values, we obtained cm .
, as calculated, differs to by three standard deviations.

However, we consider the discrepancy in magnitude between
and to be not such a bad disagreement, in particular, when
we consider the uncertainty in the estimate of, and the scatter
in the data. A better estimate of damage size, when available,
would be of course very useful to further test our model.

B. The Parameter

At this time we shall consider the parameter merely
as a fitting parameter, which phenomenologically take into ac-
count the enhancement ofby irradiation. varies with

, and with the magnitude and direction of. in-
creases approximately exponentially with respectand , and
it varies in magnitude between 0.810 to 200 10 cm ,
in the range of and here investigated. The fitting of (2)
to the data shown in Fig. 1 gives ,
3.98 10 , 19.8 10 cm for , 1.8, and 4.0 T,
respectively. The fitting of (2) to the data shown in Fig. 2 gives
instead , 7.2 10 , 24.8 10 cm
for , 74, and 77 K, respectively.

We observe that the fitting of the -vs.- curves results in
comparable values when the experimental conditions
(i.e., and ) are such that the ratios have same values
( is the irreversibility fieldprior irradiation at a given ;

values here used where derived by transport measurement
as described in [9]). As an example, we point out that the value
of , which gives the best fitting to the data at 74 K and
1.8 T in Fig. 1, is comparable to the value of , which
gives the best fitting to the data at 70 K and 0.4 T in Fig. 2.
Although and are different, the ratios are in both
cases 0.46, i.e., T at 74 K and parallel to the
tape surface, and 0.87 T at 70 K and perpendicular to the
tape surface.

This finding indicates that the experimental conditions, i.e.,
temperature, and magnetic field magnitude and direction, may
all be represented by a single variable, i.e., .

VI. CONCLUSION

We have shown that the reduction of the flow area may ac-
count for the fall-off; quantitativelythe fall-off can be
related to the size of the single irradiation-induced defect. If
confirmed, this model suggests that a smaller size defect, al-
though still in the shape of quasicolumnar defect, may result in
a slower fall-off, hence may result in a higher . We note
that this hypothesis is opposed to the generally accepted view
that full-columnar defects provide the greatestenhancement,

because they provide the largest pinning force [6]. However, this
view is based only on vortex-damage interaction studies, and it
neglects the reduction of flow-area effect. An effect which as
shown here, may play a major role in determining the height of
the enhancement peak.

In conclusion, these results suggest that a largerenhance-
ment may be achievable, by more careful control of the single
ion damage size. We also remind the reader that the results pre-
sented here are based on data on the U/n process in Ag/Bi-2223
tape. It would be interesting try to extend the same analysis to
other HTS, and other forms of radiation.
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