132 research outputs found

    Characterization and System Identification of XY Flexural Mechanism Using Double Parallelogram Manipulator for High Precision Scanning

    Get PDF
    This article represents modeling of double parallelogram flexural manipulator derived from basic classical mechanics theory. Fourth order vibration wave equation is used for mathematical modeling and its performance is determined for step input and sinusoidal forced input. Static characterization of DFM is carried out to determine stiffness and force deflection characteristics over the entire motion range and dynamic characteristics is carried out using Transient response and Frequency response. Transient response is determined using step input to DFM which gives system properties such as damping, rise time and settling time. These parameters are then compared with theoretical model presented previously. Frequency response of DFM system gives characteristics of system with different frequency inputs which is used for experimental modeling of DFM device. Here, Voice Coil Motor is used as Actuator and optical encoder is used for positioning sensing of motion stage. It is noted that theoretical model is having 5% accuracy with experimental results. To achieve better position and accuracy, PID and LQR (Linear Quadratic Regulator) implementation was carried out on experimental model. PID gains are optimally tuned by using Ziegler Nichols approach. PID control is implemented experimentally using dSPACE DS1104 microcontroller and Control Desk software. Experimentally, it is observed that positioning accuracy is less than 5 μm. Further multiple DFM blocks are arranged for developing XY flexural mechanism and static characterization was carried out on it. The comparison of experimental and FEA results for X-direction and Y-direction is presented at end of paper

    CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield.

    Get PDF
    By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morphological features of carbon nanotubes and nanofibers (CNTs and CNFs) grown from zirconia nanoparticle catalysts versus typical oxide-supported metal nanoparticle catalysts. Nanofibers borne from zirconia lack an observable graphitic cage consistently found with nanotube-bearing metal nanoparticle catalysts. We observe two distinct growth modalities for zirconia: (1) turbostratic CNTs 2-3 times smaller in diameter than the nanoparticle localized at a nanoparticle corner, and (2) nonhollow CNFs with approximately the same diameter as the nanoparticle. Unlike metal nanoparticle catalysts, zirconia-based growth should proceed via surface-bound kinetics, and we propose a growth model where initiation occurs at nanoparticle corners. Utilizing these mechanistic insights, we further demonstrate that preannealing of zirconia nanoparticles with a solid-state amorphous carbon substrate enhances growth yield.This material is based upon work supported by the National Science Foundation under Grant No. 1007793 and was also supported by Airbus group, Boeing, Embraer, Lockheed Martin, Saab AB, Hexcel, and TohoTenax through MIT’s Nano- Engineered Composite aerospace STructures (NECST) Consortium. This research was supported (in part) by the U.S. Army Research Office under Contract W911NF-13-D-0001. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF Award No. ECS-0335765. CNS is part of Harvard University. This work was carried out in part through the use of MIT Microsystems Technology Laboratories. Stephan Hofmann acknowledges funding from EPSRC under grant EP/H047565/1. Piran Kidambi acknowledges the Lindemann Trust Fellowship.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/ja509872y

    Bone marrow-derived cells in ocular neovascularization: contribution and mechanisms

    Full text link
    Ocular neovascularization often leads to severe vision loss. The role of bone marrow-derived cells (BMCs) in the development of ocular neovascularization, and its significance, is increasingly being recognized. In this review, we discuss their contribution and the potential mechanisms that mediate the effect of BMCs on the progression of ocular neovascularization. The sequence of events by which BMCs participate in ocular neovascularization can be roughly divided into four phases, i.e., mobilization, migration, adhesion and differentiation. This process is delicately regulated and liable to be affected by multiple factors. Cytokines such as vascular endothelial growth factor, granulocyte colony-stimulating factor and erythropoietin are involved in the mobilization of BMCs. Studies have also demonstrated a key role of cytokines such as stromal cell-derived factor-1, tumor necrosis factor-α, as well as vascular endothelial growth factor, in regulating the migration of BMCs. The adhesion of BMCs is mainly regulated by vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and vascular endothelial cadherin. However, the mechanisms regulating the differentiation of BMCs are largely unknown at present. In addition, BMCs secrete cytokines that interact with the microenvironment of ocular neovascularization; their contribution to ocular neovascularization, especially choroidal neovascularization, can be aggravated by several risk factors. An extensive regulatory network is thought to modulate the role of BMCs in the development of ocular neovascularization. A comprehensive understanding of the involved mechanisms will help in the development of novel therapeutic strategies related to BMCs. In this review, we have limited the discussion to the recent progress in this field, especially the research conducted at our laboratory

    Web service selection based on analytical network process approach

    No full text
    The web service selection is a complex decision process. It engages multiple criteria for the selection of candidate service from a set of available services. There may be more than one web service meeting the functional requirements. The nonfunctional properties of these matching web services may have varying values, which should be necessarily above minimum requirements. The selection criteria may have an interdependent relationship between them. The complexity involved in the selection process necessitates the use of quantitative techniques for decision-making. Analytical Network Process (ANP) is a quantitative approach to deal with interdependent relationships within a multi-criteria decision-making framework. This paper explains the use of an AMP for web service selection. We propose a network model with clusters of elements relevant for web services and solve it as an illustrative case for ANP based web service selection

    The analytical hierarchy process approach for prioritizing features in the selection of web service

    No full text
    A selection of an appropriate web service can be viewed as a multi-criteria decision-making problem involving selection of multi-attribute candidate service from a set of available services. This selection should not be based on intuition but need thorough understanding of the decision problem and the process to prioritize the features and, hence services. This study proposes analytical hierarchy process (AHP) approach for prioritizing web service features, thus aiding the decision making process in a quantitative way. The AHP method is a way of solving the decision problem by pairwise comparison of elements with consistency in results. An illustrative problem for prioritizing web service features is also detailed here so as to substantiate our proposal

    A Review: Design and Fabrication of Crop Reaper Machine

    Full text link
    This title presents the concept for design and Fabricationof crop cutter. The crop cutting is important stage in agriculture field. Currently in Indiafarmer used conventional method for the crop cutting i.e. the conventional method for crop cutting is a manually cutting using laborsbut this method is lengthy and time consuming.This project aim is to design and fabricationof small field crop cutter machine.It has cutting blades which cut the crop in a scissoring type of motion. There are two metal strip (plate) upper cutter plate will be reciprocate by scotch yoke mechanism. The machine consists of petrol engine to operate cutting roller and blade. When compare to manual crop cutting by and this machine has a capacity to cut the crop in Faster.This harvester might be the solution to the problems faced by a small-scale farmer regarding cost and labor implementation.This machine to helpful for both the small as well as big farm
    corecore