2,409 research outputs found

    Hygrothermal Behaviour of Three Internal Retrofit Prototype Solutions

    Get PDF
    AbstractAlthough the application of internal insulation to existing perimeter walls poses significant challenges in terms of building physics and loss of habitable space, it is sometimes an inevitable choice because of practical or legislative constraints. Innovative solutions are then required to deliver satisfying performances and reduce nuisance to inhabitants of residential buildings in case they are going to remain in their flats during the retrofit works.Three systems for inner thermal retrofitting purposes have been designed and produced as prototypes. Two of them are composed by silica aerogel containing fibrous material: the first one is a rigid flat laminated panel, the second one is a rollable solution with a fabric finishing layer. The third insulating system is a perlite based board with a hydrophobic layer. All the materials composing the retrofit solutions have been characterized by means of laboratory tests in order to measure their main hygrothermal properties. In fact, some parameters are fundamental for determining the hygrothermal performance of the composite systems: thermal conductivity, at dry and wet state (moisture dependant), water vapour diffusion resistance factor, hygroscopic sorption at isotherm condition and water absorption coefficient. All those measured data were necessary for optimizing the solutions, guaranteeing energy efficiency and vapour open layers to systems that are intended for installation on existing walls

    ρ\rho-mass Modification in He3He^3 - a Signal of Restoration of Chiral Symmetry or Test for Nuclear Matter Models ?

    Full text link
    Two recent experiments have demonstrated that the effective ρ\rho-mass in nuclear medium, as extracted from the 3He(γ,π+π)^3He(\gamma, \pi^+ \pi^-) reaction, is substantially reduced. This has been advocated as an indication of partial restoration of chiral symmetry in nuclear matter. We show that even in the absence of chiral symmetry, effective mean field nuclear matter models can explain these findings quantitatively.Comment: ReVTeX file with 2 postscript figures include

    Configurable LDPC Decoder Architecture for Regular and Irregular Codes

    Get PDF
    Low Density Parity Check (LDPC) codes are one of the best error correcting codes that enable the future generations of wireless devices to achieve higher data rates with excellent quality of service. This paper presents two novel flexible decoder architectures. The first one supports (3, 6) regular codes of rate 1/2 that can be used for different block lengths. The second decoder is more general and supports both regular and irregular LDPC codes with twelve combinations of code lengths −648, 1296, 1944-bits and code rates-1/2, 2/3, 3/4, 5/6- based on the IEEE 802.11n standard. All codes correspond to a block-structured parity check matrix, in which the sub-blocks are either a shifted identity matrix or a zero matrix. Prototype architectures for both LDPC decoders have been implemented and tested on a Xilinx field programmable gate array.NokiaNational Science Foundatio

    Large mass dileptons from the passage of jets through quark gluon plasma

    Get PDF
    We calculate the emission of large mass dileptons originating from the annihilation of quark jets passing through quark gluon plasma. Considering central collisions of heavy nuclei at SPS, RHIC and LHC energies, we find that the yield due to the jet-plasma interaction gets progressively larger as the collision energy increases. We find it to be negligible at SPS energies, of the order of the Drell-Yan contribution and much larger than the normal thermal yield at RHIC energies and up to a factor of ten larger than the Drell-Yan contribution at LHC energies. An observation of this new dilepton source would confirm the occurrence of jet-plasma interactions and of conditions suitable for jet-quenching to take place.Comment: 9 pages, 11 figures; references added, improved calculation, conclusions unchange

    Photon Production from a Quark--Gluon Plasma

    Get PDF
    In-medium interactions of a particle in a hot plasma are considered in the framework of thermal field theory. The formalism to calculate gauge invariant rates for photon and dilepton production from the medium is given. In the application to a QED plasma, astrophysical consequences are pointed out. The photon production rate from strongly interacting quarks in the quark--gluon plasma, which might be formed in ultrarelativistic heavy ion collisions, is calculated in the previously unaccessible regime of photon energies of the order of the plasma temperature. For temperatures below the chiral phase transition, an effective field theory incorporating dynamical chiral symmetry breaking is employed, and perturbative QCD at higher temperatures. A smooth transition between both regions is obtained. The relevance to the soft photon problem and to high energy heavy ion experiments is discussed.Comment: Paper in ReVTeX. Figures and complete paper available via anonymous ftp, ftp://tpri6c.gsi.de/pub/phenning/hq95ga

    ρ\rho - nucleus bound states in Walecka model

    Full text link
    Possible formation of ρ\rho nucleus bound state is studied in the framework of Walecka model. The bound states are found in different nuclei ranging from 3He^3He to 208Pb^{208}Pb. These bound states may have a direct bearing on the recent experiments on the photoproduction of ρ\rho meson in the nuclear medium.Comment: RevTeX fil

    Thermal Dileptons from pi - rho Interactions in a Hot Pion Gas

    Full text link
    A systematic study of low mass dilepton production from πρ\pi-\rho interactions in a hot medium is presented. Applying finite temperature perturbation theory the dilepton rate, respectively the virtual photon rate, is computed up to order gρ2g_\rho^2. For dilepton masses below the ρ\rho the two-body reactions ππργ\pi\pi\to \rho \gamma^*, πρπγ\pi\rho\to \pi \gamma^*, and the decay process ρππγ\rho \to \pi \pi \gamma^* give significant contributions. Non-equilibrium contributions to the thermal rate are estimated, including the modification of the particle distribution function with non-zero pion chemical potential. The comparison of the dilepton rate with the recent data measured in nucleus-nucleus collisions at SPS energy by the CERES Collaboration is also performed. It is shown that the additional thermal dileptons from πρ\pi-\rho interactions can partially account for the access of the soft dilepton yield seen experimentally.Comment: 21 pages LaTeX, 8 figs with epsfig.sty macro include

    e^+e^- Pair Production from γ\gamma A Reactions

    Full text link
    We present a calculation of e^+e^- production in γA\gamma A reactions at MAMI and TJNAF energies within a semi-classical BUU transport model. Dilepton invariant mass spectra for γ\gammaC, γ\gammaCa and γ\gammaPb are calculated at 0.8, 1.5 and 2.2 GeV. We focus on observable effects of medium modifications of the ρ\rho and ω\omega mesons. The in-medium widths of these mesons are taken into account in a dynamical, consistent way. We discuss the transport theoretical treatment of broad resonances.Comment: 42 pages including 16 figure

    Quark Dispersion Relation and Dilepton Production in the Quark-Gluon Plasma

    Get PDF
    Under very general assumptions we show that the quark dispersion relation in the quark-gluon plasma is given by two collective branches, of which one has a minimum at a non-vanishing momentum. This general feature of the quark dispersion relation leads to structures (van Hove singularities, gaps) in the low mass dilepton production rate, which might provide a unique signature for the quark-gluon plasma formation in relativistic heavy ion collisions.Comment: 6 pages, Revtex, 2 PostScript figures, revised version to be published in Phys. Rev. Let
    corecore