
J Sign Process Syst (2008) 53:73–88
DOI 10.1007/s11265-008-0221-7

Configurable LDPC Decoder Architectures
for Regular and Irregular Codes

Marjan Karkooti · Predrag Radosavljevic ·
Joseph R. Cavallaro

Received: 12 January 2007 / Revised: 5 September 2007 / Accepted: 21 April 2008 / Published online: 10 May 2008
© 2008 Springer Science + Business Media, LLC. Manufactured in The United States

Abstract Low Density Parity Check (LDPC) codes are
one of the best error correcting codes that enable the
future generations of wireless devices to achieve higher
data rates with excellent quality of service. This paper
presents two novel flexible decoder architectures. The
first one supports (3, 6) regular codes of rate 1/2 that
can be used for different block lengths. The second
decoder is more general and supports both regular
and irregular LDPC codes with twelve combinations
of code lengths −648, 1296, 1944-bits and code rates-
1/2, 2/3, 3/4, 5/6- based on the IEEE 802.11n standard.
All codes correspond to a block-structured parity check
matrix, in which the sub-blocks are either a shifted iden-
tity matrix or a zero matrix. Prototype architectures
for both LDPC decoders have been implemented and
tested on a Xilinx field programmable gate array.

Keywords Low density parity check codes ·
Reconfigurable architectures · Error correcting codes

1 Introduction

Low Density Parity Check (LDPC) codes were pro-
posed by Gallager [1] more than 40 years ago, but his

M. Karkooti (B) · P. Radosavljevic · J. R. Cavallaro
Department of Electrical and Computer Engineering,
Rice University, 77005 Houston, TX, USA
e-mail: marjan@rice.edu

P. Radosavljevic
e-mail: rpredrag@rice.edu

J. R. Cavallaro
e-mail: cavallar@rice.edu

work received little attention until after the invention
of turbo codes, which used the same concept of iterative
decoding. In 1996, MacKay and Neal [2] rediscovered
LDPC codes. The excellent error correction capability
of these codes led to an overwhelming interest in de-
signing LDPC codes suitable for practical applications.

One of the major applications for error correcting
codes such as convolutional code, turbo or LDPC codes
is wireless communications. Every year millions of
wireless devices enter the market. There is an increas-
ing need for higher data rate and higher throughput
which requires the use of stronger and more powerful
error correcting codes. The LDPC and turbo codes
have been shown to be the two major competitors in
this space. Many standards have adopted or are consid-
ering LDPC codes, such as DVB-S2, IEEE 802.11n and
WiMAX. Other standards, such as DVB-S and 3GPP-
LTE, use turbo codes.

Throughput and complexity of LDPC decoding de-
pend on six major parameters: the number of bits in
the codeword or ‘block length’, the ratio of the num-
ber of information bits to the codeword length or
‘code rate’, the complexity of computations at each
processing node, the complexity of interconnection, the
parallelism level, and the number of times that local
computations need to be repeated or the number of
iterations. There is a trade-off between performance of
the decoder and the complexity and speed of decod-
ing. We will address these trade-offs throughout this
paper in more detail. One of the main advantages of
LDPC codes is the inherent parallelism in the decoding
process which can lead to a very high decoding through-
put if used properly. In this paper, we present two novel
high throughput LDPC decoders. One of them supports
the (3, 6) regular LDPC codes of rate 1/2 [3]. This

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Rice University

https://core.ac.uk/display/4467207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

74 M. Karkooti et al.

architecture is suitable for applications with area/power
constraints and high throughput requirements which
do not need total flexibility in terms of block length
and code rate. By using the knowledge gained from
the first decoder architecture, we describe the design
of a high throughput, flexible LDPC decoder that sup-
ports multiple block lengths (648, 1296, 1944 bits) and
multiple code rates (1/2, 2/3, 3/4, 5/6) based on the
IEEE 802.11n standard [4] for irregular LDPC codes.
These codes are block-structured with profiles (refer
to [5]) that provide error-correcting performance close
to excellent fully random codes, such as the codes
from [6]. This LDPC decoder has a semi-parallel de-
sign and supports twelve codes with a small control
and arithmetic logic overhead [7]. It can also switch
between different code sizes and code rates on the
fly without any need for recompilation or re-synthesis.
Furthermore, it uses layered belief propagation (LBP)
which converges twice as fast as the standard belief
propagation algorithm, resulting in two times higher
data throughput [8]. This decoder architecture is easily
expandable to support other code sizes/rates.

In the last few years extensive research have been
done on designing architectures for LDPC coding.
Researchers have been looking for the best trade-off
between area, data rate and power consumption. Au-
thors in [9] directly mapped the Sum-Product decod-
ing algorithm to hardware. They used a fully parallel
approach and connected all the functional units with
wires according to the Tanner graph connections. Al-
though this decoder has very good performance, the
large area and the routing complexity and overhead
makes this approach infeasible for larger block lengths
(e.g. more than 1000 bits). Also, there is no flexibility in
this decoder.

Another approach is to have a semi-parallel decoder
and reuse the processing units to decrease the area cost
at the expense of lower throughput than fully paral-
lel. In [10], a field programmable gate array (FPGA)
implementation of a (3, 6) regular LDPC semi-parallel
decoder is offered. They used a multi-layered inter-
connection network to access messages from memory.
Authors in [11] proposed a low-power 1055 bit, rate
0.4, (3, 5) regular semi-parallel decoder architecture. A
fully structured parity check matrix (PCM) was used
to eliminate the data dependence among the neighbor-
ing nodes which led to a simpler memory addressing
scheme than [10]. By using a semi-parallel approach,
several processing units - equal to the size of the sub-
blocks S- can work simultaneously to reduce the decod-
ing time and hence increase the throughput by a factor
of S compared to the serial approach.

Most of the works related to architectures for LDPC
decoders are based on a fixed code [3, 12] or they are
scalable and support multiple rates, but only for a single
code size. For example, a scalable structured LDPC
decoder with relatively high data throughput is pro-
posed in [13] for very long codeword lengths defined
by the DVB-S2 standard. Also, authors in [14, 15]
and [16] offered multi-rate decoder designs based on
structured PCMs for regular and irregular codes, using
the standard belief propagation algorithm.

In recent years, several other architectures have
been proposed for decoding LDPC codes. Most of them
use Quasi-cyclic LDPC codes with variations of the
sum-product decoding algorithm. To name a few, the
reader is referred to [17–26].

FPGAs or Application Specific Integrated Circuits
(ASICs) are very suitable for designing LDPC en-
coders/decoders because of the flexible number of
processing units that can work in parallel rather than
the limited number of processing units in Digital Signal
Processors or general purpose processors.

Every application has its own requirements and spe-
cific parameters. In order to decrease the design time
and reuse the same hardware for many applications,
a general, configurable, flexible architecture that sup-
ports several cases is of interest. This LDPC decoder
should support a family of codes and should be able
to switch between different code types seamlessly. For
example, in wireless communication systems, or in user
cooperation schemes, when the transmission channel is
good, codes with a fewer number of redundant bits or
higher rates can be used. Or, smaller block lengths can
be used when there is less data to be transferred. So, a
multi-size, multi-rate LDPC decoder is a suitable choice
for future generations of wireless devices.

The organization of the paper is as follows: Section 2
overviews the LDPC codes, describing their encoding
and decoding processes. A flexible architecture for reg-
ular LDPC codes is described in Section 3. Section 4
presents a novel flexible architecture for both regular
and irregular LDPC codes. The decoder architecture
prototypes are implemented on an FPGA and also
synthesized for ASIC using Chartered Semiconductor
0.13 μm CMOS technology. The details of the archi-
tectures are presented in Sections 3 and 4. Section 5
concludes the paper.

2 LDPC Codes

LDPC codes are a class of linear block codes specified
by a very sparse PCM H(N−K)×N . Each element of the

LDPC decoder architectures for regular and irregular codes 75

PCM is either a zero or a one, where nonzero entries
are typically placed at random. During the encoding
process, N − K redundant bits are added to the K
information bits to form a codeword length of N bits.
The code rate is the ratio of the information bits to
the total bits transmitted in a codeword (R = K/N).
LDPC codes are usually represented by a bi-partite
graph called a ‘Tanner graph’. There are two classes of
nodes in a Tanner graph, ‘Variable’ nodes and ‘Check’
nodes. A variable node corresponds to a ‘coded bit’
or a PCM column, and a check node corresponds to a
parity check equation or a row of the PCM. There is
an edge between each pair of nodes if there is a ‘one’
in the corresponding PCM entry. During the decoding
process, messages are passed among the graph nodes.
Log-likelihood ratios (LLRs) are used for representa-
tion of reliability messages.

The number of nonzero elements in each row or
column of a PCM is called the ‘degree’ of that node.
An LDPC code is regular or irregular based on the
node degrees. If variable or check nodes have differ-
ent degrees, then the LDPC code is called ‘irregular’
otherwise, it is called ‘regular’. In low SNR regimes,
irregular codes usually have better performance than
regular codes [5] because the nodes with higher degrees
converge faster and assist the nodes with lower degrees.
On the other hand, irregularity of the code results in a
more complex hardware architecture.

Figure 1 shows a Tanner graph of a simple PCM
H4×8. In this graph variable and check nodes have
degrees of two and four, respectively. To encode a

X1

X8

X7

X6

X5

X4

X3

X2

C1

C4

C3

C2

Check Nodes

Variable Nodes

H =

1 0 1 0 1 0 1 0
1 0 0 1 0 1 0 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 1

Figure 1 Tanner graph of a PCM.

message M of K bits with LDPC codes, one might
compute C1×N = M1×K.GK×N , in which C is the code-
word and G is the generator matrix of the code. At
first glance, encoding may seem to be a computation-
ally expensive task for large matrices, but there exist
some reduced complexity algorithms for encoding the
LDPC codes such as [27]. In this work, our focus is
on the decoder design. In the following sections, we
will show that by taking advantage of the iterative
decoding process and structure of the code matrix, we
can increase the parallelism level of the architecture
and increase the throughput of the decoder.

2.1 Decoding Using Variations of Sum-Product
Algorithm

Gallager presented a decoding algorithm that is effec-
tively optimal in his seminal work in 1960. Since then,
other researchers have independently discovered that
algorithm and related algorithms, albeit sometimes for
different applications. The algorithm is usually referred
to with different names such as ‘Message Passing’,
‘Sum-Product’ or ‘Belief Propagation’. It iteratively
computes the probability distributions of variables in
graph-based models. The iterative decoding algorithm
for turbo codes is a specific instance of the Sum-Product
algorithm.

Consider the Tanner graph of Fig. 1 for an LDPC
code. During the decoding process, information is sent
along the edges of the graph. Local computations are
done in each node of the graph. To facilitate the sub-
sequent iterative processing, one tries to keep the
graph as sparse (low density) as possible. Although
that approach can be suboptimal, it is usually quite
close to optimal and has an excellent complexity vs.
performance tradeoff. In the rest of this section, we
will describe the original Sum-Product algorithm and
some of its variations such as the Modified Min-Sum
(MMS) algorithm and LBP algorithm. Throughout this
paper, an Additive White Gaussian Noise channel is
considered with Binary Phase Shift Keying modulation
of the signals.

2.1.1 Sum-Product Algorithm in Log Domain

Let Rmj denote the check node LLR message sent from
the check node m to the variable node j. Let L(qmj)

denote the variable node LLR message sent from the
variable node j to the check node m. The L(q j) (j =
1, . . . , N) represent the a posteriori probability ratio
(APP messages) for all variable nodes (coded bits). The
APP messages are initialized with the corresponding a

76 M. Karkooti et al.

priori (channel) reliability value of the coded bit j. In
each iteration, some of the APP messages correspond-
ing to the code bits that are received in error are cor-
rected. Theoretically, the received codeword converges
to the transmitted codeword after several iterations.

The Sum-Product algorithm operates on the nonzero
entries of the PCM H. It iterates over the columns and
rows of the PCM performing the following steps:

Step 1) Initialization: For each variable node j, mes-
sages L(qmj) that correspond to a particular
check equation m are computed according to:

L(qmj) = L(q j) = 2y j/σ
2, (1)

in which y j is the received signal and σ is the
channel noise.

Step 2) For each check node m, messages Rmj, corre-
sponding to all variable nodes j that partici-
pate in a particular parity-check equation, are
computed according to:

Rmj =
∏

j′∈N(m)\{ j }
sign

(
L(qmj′)

)

×φ

⎡

⎣
∑

j′∈N(m)\{ j }
φ

(
L(qmj′)

)
⎤

⎦ , (2)

where N(m) is the set of all variable nodes
from parity-check equation m and φ(x) is
equal to:

φ(x)=− log
(

tanh(x/2)
)= log

(
ex+1

ex−1

)
. (3)

Equation 2 is performing summations and
multiplications of different messages and
hence the name sum-product.

Step 3) Compute messages at variable nodes and pass
to check nodes,

L(qmj) = L(q j) + �m′∈C(j)\{m} Rm′ j. (4)

Step 4) The a posteriori reliability messages are up-
dated according to:

L(Q j) = L(q j) + �m∈C(j) Rmj. (5)

Step 5) Threshold the values calculated in each vari-
able node to find a codeword. For every row
index j :

ĉ j =
{

1 i f L(Q j) < 0
0 else.

(6)

If the codeword satisfies all the parity check
equations or if the maximum number of iter-
ation is reached then stop, otherwise continue
iterations from Step 2.

Min-Sum Algorithm The Min-Sum algorithm is an
approximation of the sum-product algorithm in which
a set of calculations on a nonlinear function φ(x), is
approximated by a minimum function. Consider the
update equation for Rmj in the Sum-Product algorithm
(Eq. 2). The term φ(x) is a monotonically decreasing
function for the values of x > 0 (See Fig. 2). It is
intuitive that the term corresponding to the smallest
‖L(qmj′)‖ in the above summation in Eq. 2 dominates,
so that:

φ
(
� j′∈N(m)\{ j }φ

(‖L(qmj′)‖
)) ≈ φ

(
φ

(
min j′ ‖L(qmj′)‖

))

= min j′ ‖L(qmj′)‖. (7)

The second equality follows from φ(φ(x)) = x. Com-
paring the Min-Sum algorithm to the Sum-Product
algorithm, Eq. 4 in the Sum-Product algorithm is re-
placed by the following approximation in Min-Sum:

Rmj ≈
⎛

⎝
∏

j′∈N(m)\{ j }
sign(L(qmj′)×min j′∈N(m)\{ j }‖L(qmj′)‖

⎞

⎠.

(8)

Because of this approximation, there is some degra-
dation in the performance of the Min-Sum algorithm
compared to the Sum-Product algorithm. The error
correcting performance of the Min-Sum algorithm can
be improved by adding an offset to, or by scaling the
soft information; the new variation of the algorithm is
called MMS algorithm.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

x

ph
i(x

)

Figure 2 The φ(x) = − log(tanh(x/2)) function which is part of
the Log-Sum-Product algorithm.

LDPC decoder architectures for regular and irregular codes 77

MMS Algorithm In the literature, it has been experi-
mentally shown that scaling the soft information during
the decoding step using the Min-Sum algorithm results
in better performance. Scaling slows down the conver-
gence of iterative decoding and reduces the overestima-
tion error compared with the Sum-Product algorithm.
Heo [28] showed that density evolution techniques can
be used to determine the optimal scaling factor. He also
showed that for a (3, 6) LDPC code a scaling factor of
0.8 is optimal. In this algorithm, it is enough to change
Step 2 in the Min-Sum algorithm to:

L(qmj) = (
L(c j) + �m′∈C(j)\{m}L(rm′ j)

) ∗ γ, (9)

in which γ is the scaling factor. Also, some researchers
have shown that adding a correcting factor to the
Min-Sum equation has the same effect as scaling [29].

Figure 3 shows a comparison between the perfor-
mance of Sum-Product, Min-Sum and MMS algorithms.
It can be seen that scaling the soft information not only
compensates for the loss of performance because of
approximation, but also results in superior performance
compared to the Sum-Product algorithm, because of
the reduction in overestimation error. MMS with scal-
ing is used as the decoding algorithm in our first
architecture and Layered belief propagation with MMS
with correcting offset (LBP-MMS) is used in the second
architecture. We will describe the LBP-MMS algorithm
in more detail in the next section.

Table 1 shows a comparison between the number of
calculations needed for each of the decoding algorithms
for a (3, 6) LDPC code in each iteration of decoding.
It can be observed that the MMS algorithm substitutes
the costly function evaluations with addition and shift

1 1.5 2 2.5 3 3.5
10

–6

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

BER vs SNR , Block Size=768, Rate = 1/2

Eb/No

B
E

R

Min–Sum, itr=20
Log–Sum–Product, itr=20
Modified–Min–Sum, itr=20

Figure 3 Comparison of different decoding algorithms.

Table 1 Complexity of different algorithms per iteration for a
(3,6) regular LDPC code.

Algorithm Addition φ(x) Shift

Log-Sum-Prod. 24(N − K) + 7N 12(N − K) −
Min-Sum 24(N − K) + 7N − −
Mod.Min-Sum 24(N − K) + 10N − 6N
Layered BP

with Mod.Min-Sum 28(N − K) − −
BP belief propagation

operations. Although the MMS algorithm has a few
more additions than other algorithms, it is still pre-
ferred since nonlinear function evaluations are omitted.
The function φ(x) is sensitive to quantization error
which results in loss of decoder performance. Either
direct implementation or look up tables can be used
to implement this function. Direct implementation is
costly for hardware [9]. Look-up tables (LUT) are very
sensitive to the number of quantization bits and number
of LUT values [10]. Since in each functional unit several
LUTs should be used in parallel, they can take a large
area on the chip. Eliminating the need for this function
in the decoder saves some area and complexity.

2.1.2 Layered Belief Propagation Algorithm

One of the newer versions of LDPC decoder archi-
tectures is based on the LBP algorithm as defined
in [11]. This algorithm converges twice as fast as the
original Sum-Product algorithm due to the optimized
scheduling of reliability messages [30]. The PCM can
be viewed as a group of concatenated horizontal layers
as shown in Fig. 4, where every layer represents the
component code. The belief propagation algorithm is
repeated for each horizontal ‘Layer’ and updated a pos-
teriori probabilities are passed between layers. In this

0 100 200 300 400 500 600 700

0

100

200

300

Columns

R
ow

s

Figure 4 PCM of a regular (3,6) LDPC code.

78 M. Karkooti et al.

algorithm, the Eqs. 1, 2, 4, 5 are performed for each
layer separately. They are replaced with:

L(qmj) = L(q j) − Rmj, (10)

Rmj =
∏

j′∈N(m)\{ j }
sign

(
L(qmj′)

)
φ

⎡

⎣
∑

j′∈N(m)\{ j }
φ

(
L(qmj′)

)
⎤

⎦ ,

(11)

L(q j) = L(qmj) + Rmj. (12)

The MMS algorithm with correcting offset can be per-
formed for LBP also [29]. In this case, the updating
of check node messages in the mth row of the kth
decoding iteration is determined as:

Rmj ≈
∏

j′∈N(m)\{ j }
sign

(
L(qmj′)

)

× max
(

min
j′∈N(m)\{ j }

|L(qmj′)| − β, 0

)
, (13)

where β is a correcting offset equal to a positive con-
stant. Hard decisions can be made after every hori-
zontal layer based on the sign of L(q j), j = 1, . . . , n.
If all parity-check equations are satisfied or the pre-
determined maximum number of iterations is reached,
then the decoding algorithm stops. Otherwise, the algo-
rithm repeats from Eq. 10 for the next horizontal layer.

3 Architecture Design for a Regular LDPC Decoder

Recent hardware designs of semi-parallel LDPC de-
coders are mostly based on block-structured PCMs,
for both regular and irregular codes. The block struc-
ture has several advantages over randomly generated
codes. First, it simplifies the interconnection network
between the variable and check nodes and allows using
permuters for address interleaving. Second, instead of
having random addressing, addresses can be generated
using linear equations. Third, it allows packed storage
of several messages in a single memory word. Authors
in [5] showed that (3, 6) is the best choice for a rate
1/2 LDPC code. We have used a (3, 6) code in our
first design and the decoding algorithm is the MMS
algorithm in the log domain.

In each iteration of the decoding, first all the check
nodes receive and update their messages and then, in
the next half-iteration all the variable nodes update
their messages. If we choose to have a one-to-one

relation between processing units in the hardware and
variable and check nodes in the Tanner graph, then the
design will be fully parallel. Obviously, a fully parallel
approach takes a large area; but is very fast. There is
also no need for central memory blocks to store the
messages. They can be latched close to the processing
units [9]. With this approach, the hardware design can
be fixed to relate to a special case of the PCM.

Implementing the LDPC decoding algorithm in a
fully-serial architecture has the smallest area since
it is sufficient to have just one Variable Functional
Unit (VFU) and one Check Functional Unit (CFU).
The fully-serial approach is suitable for Digital Signal
Processors in which there are only a few functional
units available to use. However, speed of the decoding
is very low.

To balance the trade-off between area and through-
put, the best strategy is to have a semi-parallel de-
sign. This involves the creation of “lc” CFUs and “lv”
VFUs, in which lc << N − K and lv << N and reuse
these units throughout the decoding process. The PCM
should be structured in order to enable re-usability of
units. Also, in order to design a fast architecture for
LDPC decoding, we should first design a good PCM
matrix which results in good performance with a small
number of decoding iterations. Following the block-
structured design, we have designed H matrices for
(3, 6) LDPC codes.

Figure 4 shows the regular structured PCM that has
been used in this paper. The matrix consists of (3 ×
6 = 18) blocks of size s in which s is a power of two.
Each s × s block is an identity matrix that has been
shifted to the right amn times, m = 1, ..., 3, n = 1, ..., 6.
The shift values can be any value between 0 and s − 1,
and have been determined with a heuristic search for
the best performance in the codes of the same structure.
Our approach is different from [31] since the sub-
block length is not a prime number. Also, shifts are
determined by simulations and searching for the best
matrix that satisfies our constraints (with the highest
girth [32]). Figure 5 shows a comparison between the
performance of two sets of (3, 6) LDPC codes of rate
1/2 and block lengths of 768 and 1536 designed with
the above structure. To give some comparison points,
[10] uses a LDPC code of length 1020 which achieves
BER of 10−5 and 0.3 × 10−5 for SNR of 2.7 and 3.1 dB,
respectively.

3.1 Reconfigurable Architecture for Regular Codes

For LDPC codes, increasing the block length results in
a performance improvement. This increases the error
correction ability of the code. Having a reconfigurable

LDPC decoder architectures for regular and irregular codes 79

1 1.5 2 2.5 3 3.5
10

–6

10
–5

10
–4

10
–3

10
–2

10
–1

Eb/No

B
E

R

Modified–Min–Sum, itr=20, Block=768
Modified–Min–Sum, itr=20, Block=1536

Figure 5 Simulation results for the decoding performance of
different block lengths.

architecture which can be scaled for different block
lengths enables us to choose a suitable block length
N for different applications. Usually N is in the order
of 500 ∼ 10000 bits for practical uses. Our design is
flexible for block lengths of N = 6 × 2θ for a (3,6)
LDPC code. As an example for θ = 8, N is equal to
1536. By choosing different values for θ we can get
different values for the block length. We will discuss
the statistics and design of the architecture for block
length 1536 bits, as an example. The proposed LDPC
decoder can be scaled for any block length of size
N = 6 × 2θ . The largest block length is determined with
the physical limitations of the hardware platform such
as FPGA or ASIC. It should be noted that in this
architecture, changing the block length is an off-line
process, since a new bitstream file should be compiled
to be downloaded to the FPGA.

The block diagram of a regular (3, 6) LDPC de-
coder is shown in Fig. 6. This semi-parallel architec-
ture consists of wc × wr = 3 × 6 = 18 memory units
(MEMmn, m = 1, ..., wc, n = 1, ..., wr) for storage of
the check and variable messages and wr memories
(MemInitn) for storage of the initial values read from
the channel. MemCodemn stores the decoded bits that
result from each iteration of the decoding. This archi-
tecture has several processing units called VFUs and
CFUs that are reused in each iteration. Since the code
rate is 1/2, there are twice as many columns in the
PCM as rows, which means that the number of VFUs
is two times the number of CFUs to balance the time
spent on each half-iteration. For the block length of
1536, we have chosen the parallelism factor of S = 16,
which means that there are (1536 − 768)/16 = 48 CFUs
and 96 VFUs. Each of these units is used 16 times

CFU 1

VFU 96

VFU 1

CFU 48

VFU 2

CFU 2

Controller

... ...

Channel

Mem
Initn
n =1..6 MEM mn

m =1..3
n =1..6

MemCode mn

Output

Figure 6 Overall architecture of a semi-parallel regular LDPC
decoder.

in each iteration. These units perform computations
on different input sets that are synchronized by the
controller unit.

Figure 7 shows the interconnection between memo-
ries, address generators and CFUs that are used in the
first half of iterations. In each cycle ADGCmn generate
addresses of the messages for the CFUs. Split/Merge
(S/M) units pack/unpack messages to be stored/read
to/from memories. To increase the parallelism factor,
it is possible to pack more messages (i.e. δ) in a single
memory location. This poses a constraint on the design
of the H matrix, since the shift values should all be
multiples of δ. The finite state machine ‘control unit’
supervises the flow of messages in/out of memories and
functional units.

CFU 2

C
on

tro
lle

r

CFU 1 CFU 16

S/ M S/ MS/ MS/ MS/ MS/ M

ADGC 36ADGC 35ADGC 34ADGC 33ADGC 32

CFU / MEM SET1

CFU / MEM SET3

CFU / MEM SET2

ADGC 32

...

M
E

M
31

M
em

C
od

e
31

M
E

M
32

M
em

C
od

e
32

M
E

M
33

M
em

C
od

e
33

M
E

M
34

M
em

C
od

e
34

M
E

M
35

M
em

C
od

e
35

M
E

M
36

M
em

C
od

e
36

Figure 7 Connections between memories, CFUs and address
generators.

80 M. Karkooti et al.

Min

Min

Min

Min

Min

Min

Min

Min

Min

Min

Min

Min

In1

In2

In3

In5

In6

In4

Out1

Out2

Out3

Out4

Out5

Out6

SM-->2's

SM-->2's

SM-->2's

SM-->2's

SM-->2's

SM-->2's

Code

6
Valid

2's-->
SM

2's-->
SM

2's-->
SM

2's-->
SM

2's-->
SM

2's-->
SM

Figure 8 Parallel CFU architecture.

Figure 8 shows a parallel architecture for the CFUs.
Each CFU has wr = 6 parallel inputs and outputs. This
unit computes the minimum among different choices of
five out of six inputs. The CFU outputs the results to
output ports corresponding to each input which is not
included in the set. For example out1 is the result of:

out1 = min(abs(in2), abs(in3), ..., abs(in6)). (14)

in which abs(.) is the absolute value function.
Also, during the computations of the current itera-

tion, the CFU checks the code bits resulting from the
previous iteration to check if they satisfy the corre-
sponding parity check equation (step 5 of the decoding
algorithm). After the first half of the iteration is com-
plete, the result of all parity checks on the codeword
will be ready. With this strategy, computations in check
nodes and variable nodes can be done continuously
without the need to wait for checking the codeword
resulting from the previous iteration. This increases the
speed of the decoding.

The interconnection between VFUs and memory
units and address generator ADGV is shown in Fig. 9.

Controller
MEM16

VFU 1
ADGV

V
FU

/ M
em

 S
et

2

S/
M

VFU 16

VFU 2

MEM26

S/
M

MEM36

S/
M

Mem
Init 6

S/
M

V
FU

/ M
em

 S
et

1

V
FU

/ M
em

 S
et

6

...

...

Mem
Code 16

Mem
Code 26

Mem
Code 36

Figure 9 Connections between memories, VFUs and address
generators.

>>1

>>2

>>1

>>2

>>1

>>2

In1

In2

In3

Out3

Out1

Out2

Initial
Value

Decoded Bit

+

+

+

+

+

+

+

Figure 10 VFU architecture.

Locations of the messages in the memories are such
that a single address generator can service all the
VFUs. The controller makes sure that all the units are
synchronized.

The architecture of a VFU is shown in the Fig. 10.
This unit adds different combinations of its inputs and
scales them with a scaling factor of 0.75 which is done
with shift and addition. Also, it thresholds the summa-
tion of its inputs to find the code-bit corresponding to
that variable node.

3.1.1 FPGA Architecture of Regular LDPC Codes

Most of the computations in a FPGA are fixed point
instead of floating point because fixed point operators
require smaller area. Fixed point operators suffer from
quantization error. Increasing the number of bits in
the operands decreases this error. There is a trade-
off between the number of quantization bits, area of
the design, power consumption and error-correcting
performance. Using more bits decreases the bit error
rate, but increases the area and power consumption
of the design. Also, depending on the nature of the
messages, the number of bits used for the integer or
fractional part of the representation is important. Our
simulations show that using 5 bits for the messages is
enough for good performance. One bit is used for the
sign and two bits for each of the integer and fractional
parts.

Since the memory blocks in the FPGA have no more
than two ports, we increase the number of the mes-
sage read/writes in each clock cycle by packing eight
message values and storing them in a single memory
address. This enable us to read 2 × 8 = 16 messages per
memory per cycle.

A prototype architecture has been implemented by
writing Hardware Description Language code and tar-
geted to a Xilinx Virtex4-xc4vfx60 FPGA. Table 2
shows the utilization statistics of the decoder on the
FPGA. The maximum clock frequency of this decoder

LDPC decoder architectures for regular and irregular codes 81

Table 2 Design statistics for the (3,6) regular LDPC decoder on
Virtex4-xc4vfx60 FPGA for a block length of 1536 bits and code
rate 1/2.

Resource Used Utilization rate(%)

Slices 9,881 39
FFs 3,455 6
LUTs 18174 35
Block RAMs 66 28

is 211 MHz after place and route. Considering the
parameters of our design, it takes 96 cycles to initialize
the memories with the values read from the channel,
32 cycles for each of the CFU and VFU half-iterations,
and 48 cycles to send out the resulting codeword. Based
on the average number of decoding iterations required
to achieve a frame error rate (FER) of 10−4, the data
rate of this decoder is 397 Mbps.

4 LDPC Architecture for Block-structured Irregular
LDPC Codes

In this section, we describe the details of our second
LDPC decoder. This decoder is more general than the
first one and can be scaled to different code rates/ sizes
on the fly. It is designed to support irregular block-
structured PCMs proposed for the IEEE 802.11n wire-
less standard. Based on this standard, sub-block sizes
are multiples of 27 and the code profiles are optimized
to minimize the number of short cycles and therefore
achieve excellent performance. As an example, a PCM
of a code with a block length of 1296 bits and code-rate
of 2/3 is shown in Fig. 11. The PCM is partitioned into
square sub-matrices of size 54 × 54 with at most one
nonzero entry per row/column. Each sub-matrix is ei-
ther a shifted identity matrix or a zero matrix. The black
squares show a shifted identity matrix and the white
squares show a zero matrix. The PCMs in the standard
are similar to the PCMs that we designed for the regular

1 2 3 24
1

2

3

8

4

5

6

7

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

: Zero Matrix : Shifted Identity Matrix

Figure 11 An overall view of a block-structured irregular parity-
check matrix, N = 1296 bits and R = 2/3. The black squares
show a shifted identity matrix and the white squares show a zero
matrix.

LDPC decoder described in the previous section and
Fig. 4. All of them support block-structured codes. The
difference is that the PCMs in the standard support
irregular codes and hence have some zero blocks which
leads to more complex addressing in the decoder for
irregular codes.

4.1 Scalable Decoder Architecture
for Regular/Irregular Codes

In this section, we present the description of our config-
urable, flexible LDPC decoder implementation. Based
on the standard and simulation results presented in
Section 4.4, the following features are utilized: The
LBP decoding algorithm is used since it converges
twice as fast as the Sum-Product algorithm. This results
in the same error- correcting performance with half
the decoding iterations. The PCM is block-structured
and irregular, which preserves the excellent perfor-
mance of irregular random PCMs. It should be noted
that designing an architecture for irregular codes is
more challenging because it has to be flexible to support
different column degrees. The decoder accepts block
lengths of N = 648, 1296, 1944 bits as input, which
corresponds to sub-block sizes of S = 27, 54, 81, re-
spectively. It also supports four different code rates:
R = 1/2, 2/3, 3/4, 5/6.

Figure 12 shows a block diagram of the LDPC de-
coder. The decoding is based on Eqs. 10, 11, and 12. The
design consists of memory blocks (RAMs and ROMs)
for storage of messages, processing blocks, permuters
to route messages from memory to the processing units
and a control unit similar to the design described in
Section 3 and Fig. 6. Decoding starts by reading a
parameter that selects the code rate and the code size of
the input codeword block. According to this value, the
appropriate values of the PCM are read from the Shift,

Controller
Addr
Gen

Check
Mems

Variable

Mems

DFU
Banks

H
ar

d
 D

ec
is

io
n

P
er

m
ut

er

In Out

Shift/ Offset/
Position/ Degree

ROMs

Figure 12 LDPC decoder block diagram.

82 M. Karkooti et al.

Offset, Position and wr ROMs. These values are used to
generate the addresses to read/write from/in the check
and variable memories. The decoder also inputs the
reliability values and stores them in the variable mem-
ories. The variable values pass through the permuters
to be routed to the correct decoding functional unit
(DFU) for processing. In this architecture instead of
VFUs and CFUs in Section 3, we have one processing
unit that performs both computations. Hence, we call
it the DFU. After the processing stage, results enter
the ‘early detection unit’ (EDU) to check if the valid
codeword is found. Also, the results are written back
to the variable and check memories. The next layer/
iteration starts when the decoder reads a new set of
values from the variable memories. The EDU also
analyzes the decoded word in parallel with the main
processing path. The decoder stops and outputs the
resulting codeword when either of the following two
conditions is satisfied: either EDU detects a valid code-
word, or the maximum number of iterations is reached.
The control unit controls the flow of data between all
the units. We will discuss each block of the architecture
in more detail in the following sections.

4.1.1 DFU Banks

These blocks are the main processing part of the archi-
tecture since they update the check and variable mes-
sages and calculate new values. The number of parallel
processing elements in these banks shows the paral-
lelism factor of the design. For example, for the 1296
block code in Fig. 11, 54 processing nodes can work
in parallel without any data dependency restrictions.
To support different code lengths, the architecture
should support a set of sub-block sizes of S = 27, 54, 81.
Hence, we divide the DFUs into three banks, each of
which contains 27 DFUs. For the size 1944 block, all
three banks are used (81 DFUs), for the 1296 block, two
of the banks are used (54 DFUs), and for the 648 block
just one of the banks is in use. As mentioned before,
this unit replaces both CFU and VFU processing units
in the architecture in Section 3.

The DFU inputs wr values from the check memories
and wr values from the variable memories, and updates
new variable messages and check messages based on
Eqs. 10, 11 and 12.

Figure 13 shows a block diagram of the DFU. The
values of the variable and the check messages enter
this unit and the difference is calculated based on
Eq. 10. The sign and magnitude of inputs are separated
and pass through separate computation paths based
on Eq. 13. The serial Min-Sum unit inputs the ab-
solute value of the variable messages and finds the

Latch

- 2's-->
SM

Serial
Min -Sum

Unit

+-

-

-

SM-->
2's

Latch

Latch

CMP

Shift
Register

Offset

Variable In

Check In

ABS

SGN

wr

0

Check Out

Variable Out

Check Old
Variable Old

Figure 13 The DFU block diagram.

two minimums among the wr values and the relative
index of these values compared to the first input. Then,
the offset value is subtracted from the minimums. The
intermediate output corresponding to each input is the
minimum of all the other values. It should be empha-
sized that this architecture uses the LBP with MMS
with correcting offset, whereas, the regular LDPC ar-
chitecture used the MMS with scaling factor. Both of
these approaches result in the same improvement in the
decoding performance and decrease in the computation
requirements.

The sign of each output is the multiplication of the
signs of all the inputs other than the input correspond-
ing to this output. Then, the previous check node values
are subtracted from these and the variable node values
are added to the results to generate the final outputs
(wr of them) based on Eq. 12. The outputs of all the
S-DFUs are concatenated and stored in one address of
the variable memories. It is important to note that we
do not permute back these values; variables are stored
in the shifted order. The permuter in the next layer
uses values from the Offset ROM instead of the original
shift values. This way we eliminate the need for another
permuter which saves 8% of the total area.

Serial Min-Sum Unit This unit inputs wr values and
finds the two smallest values. Depending on the re-
quirements on the architecture, this unit can be de-
signed in two different ways: ‘Parallel–Input’ (PI) or
‘Serial–Input’. The PI generates results faster by using
processing units in parallel (refer to Section 3 and
Fig. 8). This approach is suitable for a decoder that
supports regular LDPC codes with a fixed number of
inputs. Since we are dealing with irregular codes, the
number of nonzero sub-matrices in each row of the
PCM is different for each layer. This means that
the number of inputs for the Min-Sum unit varies based
on the wr. In the irregular PCMs for our architecture,
these values are between 7 and 21 for different code
rates. In order to support a variable number of inputs,
we have designed a ‘serial’ Min-Sum unit. Although
this unit runs slower than the parallel version, it has
the flexibility of accepting any number of input values

LDPC decoder architectures for regular and irregular codes 83

Input

Int - Min

Int - Min
Min

Min _index

Min2

Min2
input

Min
Min

Min _index

Concat

<

<

Counter

Min

rst

Min2

Min

rst

rst

rst

Latch

Latch

Latch

rst

Figure 14 The serial Min-Sum unit block diagram.

in serial fashion using just one input port. In this way,
the hardware can support irregular codes of different
rates and sizes. The controller marks the beginning and
end of the input sequence. The Min-Sum unit finds the
two smallest numbers and their location in the sequence
compared to the first input. Figure 14 shows the block
diagram of this unit.

4.1.2 The Flexible Permuters

One of the main challenges of the LDPC decoder
is ‘routing’ the messages from the memories to the
correct processing units as quickly as possible. For a
fixed decoder that supports a single block length/code
rate,such as the decoder in Section 3, this is done by
the address generators, split/merge units and routing
wires. For a more general case, this can be done with a
network of multiplexers to route the signals according
to the shift values. We call these multiplexer networks
a ‘permuter’.

In this architecture, permuters are used to shift a
block of S, b -bit numbers to generate the correct
addressing based on the PCM. For example, a shift
of s means that the order of the outputs should be
(s + 1) . . . S,1 . . . s instead of 1 . . . S. Analysis was done
on the structure of permuters to determine the best
structure. We tested permuters of size 81 using different
sizes/combinations of multiplexers, and selected the
one with the smallest area and highest speed, which
is designed with four levels of 4 : 1, 4 : 1, 4 : 1, 2 : 1,
multiplexers with b -bit inputs/outputs.

Since permuters occupy a significant portion of the
area, instead of having three permuters to support
different values of S (corresponding to different code
rate/size), we designed a flexible permuter of size 81,
which can be used to permute any of the sub-block
sizes. This flexible permuter is made by adding a layer

Input

Shifted/
Rotated
Output

81
, 4

:1
M

u
lt

ip
le

xe
rs

81
, 4

:1
M

u
lt

ip
le

xe
rs

81
, 2

:1
M

u
lt

ip
le

xe
rs 27

, 3
:1

M
U

X

Shift value

Mode of
operation:
27,54,81

A
d

d
re

ss
C

o
m

p
ar

at
o

rs

81
, 4

:1
M

u
lt

ip
le

xe
rs

27
, 2

:1
M

U
X

Figure 15 The flexible permuter block diagram.

of multiplexers to the original permuter of size 81 and
selecting the proper signal for each case as shown in
Fig. 15.

4.1.3 Memory Organization

There are several ROM/ RAM blocks in the system.
These blocks are divided into different banks for check
and variable messages and a few ROMs that store the
parameters to regenerate the various PCMs. To be able
to read/write one full sub-block matrix per clock cycle,
the check memory and the a posteriori memory need to
be organized in the appropriate manner.

Three memory blocks are used to store the check
messages. Organization of the check-node memory is
shown in Fig. 16. In order to increase the throughput of
the decoder and take advantage of the parallel process-
ing, we use packed storage of the check and variable
messages. S messages are concatenated and stored in a
single memory address that can be read in a single clock
cycle. Permuters are used to split and route each sin-
gle message to the corresponding DFU unit. Also, we
have divided these memory blocks into three modules
that accept the same address (to avoid extremely large
memory word lengths). Each of these modules packs
and stores 27, b-bit values from each sub-block matrix
per address. When b = 8 bits, each word in the memory
will be 27 × 8 = 216 bits long. These values correspond
to the check outputs for the DFUs numbered from 1
to 27, 28 to 54, and 55 to 81, respectively. In this way,
by reading from a single address from three memory
blocks, all the 81 check values are ready for concurrent
processing.

96

216

Rows 1,...,27 96

216

96

216

Rows 55,...,81Rows 28,...,54

Figure 16 The check memory organization block diagram.

84 M. Karkooti et al.

In the case of the largest codeword size of 1944 all
three check memory sub-modules will be used, while
only two or one module will be used in the cases of
codeword sizes of 1296 or 648, respectively. The un-
used check memory modules can be turned-off. The
depth of the check memory sub-modules depends on
the number of layers and number of non-zero sub-
block matrices per layer (row connectivity degree). The
largest depth for code rate of 1/2 is 96 since there
are (in average, because of the code irregularity) eight
non-zero sub-block matrices per layer and there are 12
layers. The addressing of check messages is very simple
since the memory locations are always accessed in an
increasing order through the use of a hardware address
increment unit.

Using the same packed storage concept, three dual
port memories are used to store the variable messages.
Organization of the memories that store the variable
values is shown in Fig. 17. The variable values are also
grouped and stored in a single memory address (groups
of 27, b-bit numbers). During the initialization step,
these messages are stored in the original order of the
inputs. They are permuted based on the elements of
the PCM to route to the correct DFU for processing.
Depending on the block sizes, the variable memories
can be divided into three or more modules.

We should note that because of the special struc-
tured design of the LDPC codes there is no memory
access conflict either in the check memories or in the
variable memories in the decoder architecture.

Packed Storage of Multiple PCMs Our flexible ar-
chitecture supports n = 3 block lengths and r = 4
code rates which gives us η = n × r = 12 combinations.
These η PCMs that correspond to each code size/rate
should be stored in ROM memories which can be very
large if stored directly. The intuition behind reducing
the memory size required for storing the PCMs is
to take advantage of the structure of the PCMs and
store a few parameters and regenerate the matrix when
needed. Considering the structure of the PCM, we can
rebuild it by knowing a few parameters: block length,
sub-block size, number of nonzero sub-matrices in each
layer of the PCM, position of the nonzero blocks and

24

216

APPs: 28-54 24

216

APPs: 55-81 24

216

APPs: 1-27

Figure 17 The variable memory organization block diagram.

the shift value to generate the shifted identity matrices.
The PCM can be regenerated on the fly using counters
and permuters.

We have added another value to these parameters
namely ‘offset’ values. These values are the shift values
with regard to the previous shift of the same layer (see
Fig. 11). For example, if the shift value for layer k is sk

and the shift value for the next layer is sk+1, the offset
ok+1 will be equal to: ok+1 = sk+1 − sk. The decoder
uses the value of ok+1 in the permuter to route the
messages.

4.1.4 Early Detection Unit

To detect that the correct codeword is found, two sets
of tests are performed after finishing the decoding of
each layer. First, check if all the parity check equations
are satisfied (Hl × c = 0). Then, compare the signs of
the updated variable messages with the previous values
of these messages and check if the signs have changed:(
sign(Lqk,l

j).sign(Lq(k,l−p)

j)
)

> 0.
The outputs of a layer are valid if all the parity

check equations are satisfied and there is no sign change
in the results. It is required that L (total number of
layers) consecutive layers satisfy these two constraints
even if they belong to two consecutive iterations. Then,
decoding stops and the resulting codeword is output.

4.1.5 Controller

This block controls the flow of the messages into/out
of different blocks during the decoding. The controller
generates enable/reset and all the hand-shaking signals
necessary for correct operation of the decoder. It also
controls the counters that generate addresses for ROM
and RAM memories. The controller inputs the values
of block size and code rate and also reads the number
of nonzero blocks in each layer (wr) from the wr ROM.
Based on these parameters, this unit controls the flow
of data to the DFUs, Min-Sum units, permuters and
other blocks in the system. The main challenge of the
controller is to keep track of the groups of wr messages
throughout the process and read/ process/ write them at
the correct time.

4.2 Hardware Overhead

To support the highest data rates for wireless networks,
this decoder is designed to support the largest block
length (N = 1944). For the smaller block lengths some
of the DFU units and memories are unused and can
be turned off/disabled using clock gating. Because of
the data dependency, it is not possible to use a number

LDPC decoder architectures for regular and irregular codes 85

Table 3 Design statistics for the flexible irregular LDPC decoder
on Virtex4-xc4vfx60 FPGA.

Resource Dec7 Dec8

Slices 11,328 12,633
FFs 12,368 13,823
LUTs 17,104 19,265
Block RAMs 87 87

of DFUs greater than the sub-block size. This is a
limitation that is imposed by the PCM structure and the
decoding algorithm. Another overhead in the design
comes from storing twelve PCMs in the memories cor-
responding to each combination of the code rate/size,
which is almost 22 Kbits. There is also 19% overhead
for the flexible permuter compared to a fixed permuter
of size 81.

4.3 Hardware Implementation of LDPC Decoder
for Irregular Codes

Two prototype architectures for the LDPC decoder
have been implemented in Xilinx System Generator
and targeted to a Xilinx Virtex4 − xc4v f x60 FPGA.
These cases include:

• LDPC decoder with 7-bit messages (Dec7)
• LDPC decoder with 8-bit messages (Dec8)

Table 3 shows the utilization statistics of these archi-
tectures. A clock frequency of 160 MHz is achieved for
both of these designs after place and route.

The proposed decoder architecture is also synthe-
sized for a Chartered Semiconductor 0.13μm, 1.2 V,
CMOS technology using the BEE/Insecta design flow
[33] and Synopsys tools. The Chartered memory com-
piler was used to generate efficient RAM and ROM
blocks. Table 4 shows the area occupied by each part of
the decoder with 8-bit messages in square millimeters.
This architecture runs at a maximum clock speed of
412 MHz and consumes 502 mW of dynamic power
(estimated using Design Compiler). The total area for
the decoder is 2.2036 mm2 for the Dec7 and 2.4928 mm2

for the Dec8.

Table 4 ASIC design statistics for the Dec8 flexible LDPC
decoder.

Resource Area mm2

Memory banks 1.1925
DFU banks 0.939
Permuters 0.289
Control 0.0029
LDPC decoder 2.4928

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
10

– 6

10
–5

10
–4

10
–3

10
–2

10
–1

Eb/No[dB]

F
ra

m
e

E
rr

or
 R

at
e

6b, fixed
7b, fixed
8b, fixed
float

Figure 18 FER for irregular block-structured PCM (R=2/3,
N=1296, MaxIter=15, LBP).

4.4 Decoding Throughput and Performance

Figure 18 shows the FER performance of the imple-
mented decoder for a 2/3-rate code with a code length
of 1296 bits and the LBP decoding algorithm. Perfor-
mance results for 6, 7 and 8-bit fixed point arithmetic
precisions and floating point are shown. Both 7 and
8-bit fixed-point precisions have small loss compared to
the floating point version.

We have estimated the decoding throughput (con-
sidering the information bits) based on the average
number of decoding iterations required to achieve a
FER of 10−4, while the maximum number of iterations
is set to 15. The clock frequency is 160 MHz for the
decoder running on the FPGA and 412 MHz for the
ASIC implementation. Figure 19 shows the average
throughput as a function of code rate and codeword
size for the decoders. As an example, for a block length
of 1944 and a rate 5/6 code, the decoder implemented

0

100

200

300

400

500

600

700

800

FPGA,
Block=648

FPGA,
Block=1296

FPGA,
Block=1944

ASIC,
Block=648

ASIC,
Block=1296

ASIC,
Block=1944In

fo
rm

at
io

n
 T

h
ro

u
g

h
p

u
t

[M
B

it
s/

se
c]

Rate=1/2 Rate=2/3 Rate=3/4 Rate=5/6

Figure 19 Average decoding throughput for different code rates
and codeword lengths for the flexible irregular architectures
synthesized for FPGA and ASIC based on the average number
of iterations.

86 M. Karkooti et al.

on the FPGA achieves an average throughput of 292
Mbits/sec and the ASIC version achieves 736 Mbits/s.
Average FPGA latency of the decoder is between 5 and
11 μs for different block lengths/rates while the average
ASIC latency is between 2.2 and 4.5 μs.

Now, we would like to compare the results of the
two decoder architectures for the regular (refer to
Section 3) and the flexible architecture for the irregular
codes that we described in this section. The decoder
for the regular (3, 6) LDPC code of rate 1/2 and block
length 1536 bits achieves decoding throughput of 397
Mbps when running on the FPGA. The flexible decoder
for irregular codes of rate 1/2 and block length of 1296
bits achieves a throughput of 56 Mbps, and the decoder
for code rate 1/2 and block length of 1944 bits achieves
a throughput of 84 Mbps. The regular decoder achieves
much higher throughput than the flexible decoder for
irregular codes at the expense of less flexibility.

5 Conclusions

We presented the design and hardware implementation
of two decoder architectures for LDPC code. The first
one supports (3, 6) regular codes and is implemented
in parallel, having a higher throughput and smaller
area. This architecture is suitable for applications in
which throughput of the decoding is very important and
scalability is not needed. The second decoder is a flex-
ible architecture for structured irregular LDPC codes.
This decoder supports a family of code sizes and rates
and can switch between different cases on the fly. The
decoder uses serial computation units which enhances
the flexibility with the cost of increased latency. There
is also some overhead in the memory and area usage of
this decoder to support the 12 combinations of the code
sizes and code rates. This decoder is suitable for the
applications that require scalability. The decoder has
a general structure and can support both regular and
irregular codes. It can also be extended to support other
code families. Both of the decoders are implemented
on an FPGA and the flexible decoder is synthesized
for ASIC.

Acknowledgements This work was supported in part by Nokia
Corporation and by NSF under grants EIA-0321266, CCF-
0541363, CNS-0551692 and CNS-0619767. We would like to
thank Yang Sun for his help in ASIC synthesis. Also, we would
like to thank the reviewers for their useful comments.

References

1. Gallager, R. (1962). Low-density parity-check codes. IRE
Transactions on Information Theory, 8, 21–28, January.

2. MacKay, D., & Neal, R. (1996). Near Shannon limit perfor-
mace of low density parity check codes. In Electronic Letters,
32, 1645–6, August.

3. Karkooti, M., & Cavallaro, J. R. (2004). Semi-parallel
reconfigurable architectures for real-time LDPC decoding.
In IEEE international conference on information technology:
Coding and computing, ITCC 2004, April.

4. IEEE 802.11 Wireless LANsWWiSE Proposal: High through-
put extension to the 802.11 Standard. IEEE 11-04-0886-
00-000n.

5. Chung, S., Richardson, T., & Urbanke, R. (2001). Analysis
of sum-product decoding of low-density parity-check codes
using a gaussian approximation. IEEE Transactions on
Information Theory, 47, 657–670, February.

6. Chung, S., Forney, G., Richardson, T., & Urbanke, R. (2001).
On the design of low-density parity-check codes within
0.0045 dB of the Shannon limit. IEEE Communications
Letters, 5, 58–60, February.

7. Karkooti, M., Radosavljevic, P., & Cavallaro, J. R. (2006).
Configurable high throughput irregular LDPC decoder ar-
chitecture: Tradeoff analysis and implementation. In IEEE
17th international conference on application-specific sys-
tems, architectures and processors (ASAP) (pp. 360–367),
September.

8. Hocevar, D. E., (2004). A reduced complexity decoder
architecture via layered decoding of LDPC codes. In IEEE
workshop on signal processing systems, SIPS (pp. 107–112).

9. Blanksby, A., & Howland, C. (2002). A 690-mW 1-Gbps
1024-b, Rate-1/2 low-density parity-check code decoder.
Journal of Solid State Circuits, 37, 404–412, March.

10. Zhang, T. (2002). Efficient VLSI architectures for error-
correcting coding. PhD thesis, University of Minnesota,
July.

11. Mansour, M. M., & Shanbhag, N. R. (2003). High-throughput
LDPC decoders. IEEE transactions on very large scale
integration (VLSI) Systems, 11, 976–996, December.

12. Darabiha, A., Carusone, A. C., & Kschischang, F. R.
(2005). Multi-Gbit/sec low density parity check decoders with
reduced interconnect complexity. In IEEE international sym-
posium on circuits and systems, ISCAS 2005, May.

13. Kienle, F., Brack, T., & Wehn, N. (2005). A synthesizable
IP core for DVB-S2 LDPC code decoding. In Proceedings of
design, automation and test in Europe.

14. Fanucci, L., Rovini, M., L’Insalata, N. E., & Rossi, F.
(2005). High-throughput multi-rate decoding of structured
low-density parity-check codes. IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer
Sciences, E88-A, 3539–3547, December.

15. Yang, L., Lui, H., & Shi, C.-J. R. (2006). Code construction
and FPGA implementation of a low-error-floor multi-rate
low-density parity-check code decoder. IEEE Transactions
on Circuits and Systems I, Regular Papers, 53, 892–904.

16. Gunnam, K., Weihuang, W., Kim, E., Choi, G., & Yeary, M.
(2006). Decoding of array ldpc codes using on-the-fly compu-
tation. In IEEE asilomar conference on signals, systems and
computers, November.

17. Sun, Y., Karkooti, M., & Cavallaro, J. R. (2007). VLSI de-
coder architecture for high throughput, variable block-size

LDPC decoder architectures for regular and irregular codes 87

and multi-rate LDPC codes. In IEEE international sympo-
sium on circuits and systems (ISCAS), May.

18. Wang, Z., & Cui, Z. (2007). Low-complexity high-speed
decoder design for quasi-cyclic LDPC codes. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 15,
104–114.

19. Masera, G., Quaglio, F., & Vacca, F. (2007). Implementation
of a flexible LDPC decoder. IEEE Transactions on Circuits
and Systems II: Express Briefs, 54, 542–546.

20. Oh, D., & Parhi, K. (2007). Efficient highly-parallel decoder
architecture for quasi-cyclic low-density parity-check codes.
In IEEE international symposium on circuits and systems
(ISCAS), May.

21. Cui, Z., & Wang, Z. (2007). Efficient message passing
architecture for high throughput LDPC decoder. In IEEE in-
ternational symposium on circuits and systems (ISCAS), May.

22. Sha, J., Gao, M., Zhang, Z., li, L., & Wang, Z. (2006).
Efficient decoder implementation for QC-LDPC codes.
In International conference on communications, circuits and
systems (Vol. 4), June.

23. Shimizu, K., Ishikawa, T., Togawa, N., Ikenaga, T., & Goto, S.
(2006). A parallel LSI architecture for LDPC decoder im-
proving message-passing schedule. In IEEE international
symposium on circuits and systems (ISCAS), May.

24. Zhu, Y., Chen, Y., Hocevar, D., & Goel, M. (2006). A
reduced-complexity, scalable implementation of low density
parity check (LDPC) decoder. In IEEE workshop on sys-
tems design and implementation and signal processing (SIPS)
(pp. 83–880), October.

25. Zhu, Y., & Chakrabarti, C. (2006). Aggregated circulant ma-
trix based LDPC codes. In IEEE international conference
on acoustics, speech and signal processing (ICASSP), May.

26. Oh, D., & Parhi, K. (2006). Low complexity implemen-
tations of sum-product algorithm for decoding low-density
parity-check codes. In IEEE workshop on signal process-
ing systems design and implementation (SIPS) (pp. 262–267),
October.

27. Richardson, T., & Urbanke, R. (2001). Efficient encoding
of low-density parity check codes. IEEE Transactions on
Information Theory, 47, 638–656, February.

28. Heo, J. (2003). Analysis of scaling soft information on low
density parity check codes. Electronics Letters, 39, 219–221,
January.

29. Chen, J., Dholakai, A., Eleftheriou, E., Fossorier, M., & Hu,
X. (2005). Reduced-complexity decoding of LDPC codes.
IEEE Transactions on Communications, 53, 1288–1299,
August.

30. Radosavljevic, P., de Baynast, A., & Cavallaro, J. R. (2005).
Optimized message passing schedules for LDPC decoding.
In IEEE 39th asilomar conference on signals, systems and
computers (pp. 591–595), November.

31. Mansour, M., & Shanbhag, N. (2002). Low power VLSI de-
coder architectures for LDPC codes. In Proc. of the int. symp.
on low power electronics and design (pp. 284–289).

32. Mao, Y., & Banihashemi, A. (2001). A heuristic search for
good low-density parity-check codes at short block lengths.
In IEEE Int. Conf. on Comm. (pp. 41–44), June.

33. Chang, C., Kuusilinna, K., Richards, B., Chen, A., Chan, N.,
Brodersen, R. W., & Nikoliae, B. (2003). Rapid design and
analysis of communication systems using the BEE hardware
emulation environment. In 14th IEEE international work-
shop on rapid systems prototyping, June.

Marjan Karkooti received the B.S. degree in electrical engi-
neering from Sharif University of Technology, Tehran, Iran,
in 1997, the M.S. degree in socioeconomic systems engineering
from the Institute for Research in Planning and Development,
Tehran, Iran, in 2000, the M.S. degree in computer engineering
from Rice University, Houston, Texas in 2004. She is currently
a research assistant in Center for Multimedia Communications
at Rice University and is working towards her PhD degree in
computer engineering. Her research interests include wireless
communications, error correcting codes such as Low Density Par-
ity Check codes and Turbo codes, cooperative communications,
hardware design using FPGAs/ASIC.

Predrag Radosavljevic was born in Belgrade, Yugoslavia, in
1975. He received the M.Sc. degree in 2004 and the Ph.D. degree
in 2008, from the Department of Electrical and Computer Engi-
neering, Rice University, Houston, USA. His research interest
include the design of detection and decoding algorithms and
architectures for wireless communication systems. He is currently
a technical advisor with Patterson&Sheridan, LLP.

88 M. Karkooti et al.

Joseph R. Cavallaro received the B.S. degree from the Univer-
sity of Pennsylvania, Philadelphia, Pa, in 1981, the M.S. degree
from Princeton University, Princeton, NJ, in 1982, and the Ph.D.
degree from Cornell University, Ithaca, NY, in 1988, all in elec-
trical engineering. From 1981 to 1983, he was with AT&T Bell
Laboratories, Holmdel, NJ. In 1988, he joined the faculty of
Rice University, Houston, Tex, where he is currently a Professor
of electrical and computer engineering. His research interests
include computer arithmetic, VLSI design and microlithography,
and DSP and VLSI architectures for applications in wireless
communications. During the 1996–1997 academic year, he served
at the USA National Science Foundation as Director of the Pro-
totyping Tools and Methodology Program. During 2005, he was a
Nokia Foundation Fellow and a Visiting Professor at the Univer-
sity of Oulu, Finland. He is currently the Associate Director of
the Center for Multimedia Communication at Rice University.
He is a Senior Member of the IEEE. He was Cochair of the
2004 Signal Processing for Communications Symposium at the
IEEE Global Communications Conference and General Cochair
of the 2004 IEEE 15th International Conference on Application-
Specific Systems, Architectures and Processors (ASAP).

	Configurable LDPC Decoder Architectures for Regular and Irregular Codes
	Abstract
	Introduction
	LDPC Codes
	Decoding Using Variations of Sum-Product Algorithm
	Sum-Product Algorithm in Log Domain
	Layered Belief Propagation Algorithm

	Architecture Design for a Regular LDPC Decoder
	Reconfigurable Architecture for Regular Codes
	FPGA Architecture of Regular LDPC Codes

	LDPC Architecture for Block-structured Irregular LDPC Codes
	Scalable Decoder Architecture for Regular/Irregular Codes
	DFU Banks
	The Flexible Permuters
	Memory Organization
	Early Detection Unit
	Controller

	Hardware Overhead
	Hardware Implementation of LDPC Decoder for Irregular Codes
	Decoding Throughput and Performance

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

