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Abstract

In-medium interactions of a particle in a hot plasma are considered in the

framework of thermal field theory. The formalism to calculate gauge invari-

ant rates for photon and dilepton production from the medium is given. In

the application to a QED plasma, astrophysical consequences are pointed

out. The photon production rate from strongly interacting quarks in the

quark–gluon plasma, which might be formed in ultrarelativistic heavy ion

collisions, is calculated in the previously unaccessible regime of photon en-

ergies of the order of the plasma temperature. For temperatures below the

chiral phase transition, an effective field theory incorporating dynamical

chiral symmetry breaking is employed, and perturbative QCD at higher

temperatures. A smooth transition between both regions is obtained. The

relevance to the soft photon puzzle and to high energy heavy ion experi-

ments is discussed.
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I. INTRODUCTION

Considerable effort is invested in present and future experiments of ultrarelativistic
heavy ion collisions (URHIC) in order to observe an excursion of the bulk of strongly
interacting matter from the state of hadrons before the collision into the phase of a
quark–gluon plasma (QGP) [1]. In order to see this shortlived state directly, one would
like to observe photons emitted from the hot plasma, as well as dileptons. Since these
probes interact only electromagnetically, their signal is not distorted by later interactions
as are other particles which are studied for the same purpose.

The experimental capability of measuring electromagnetic probes was demonstrated
in the photon channel by WA80/98 [2] and CERES [3] as well as in the dilepton channel
by Helios [4] and CERES [5].

The signal originating from the plasma phase is, however, buried under a background of
photons from different origin such as from the decays of π0 or η or from hadronic reactions
at a temperature comparable to that of the deconfined phase [6]. After subtraction of
these sources, a remaining signal seems to persist in part of the experimental analysis. At
present, it is vividly discussed to what extent one can account for these data within more
[7] or less [8] conventional physical pictures.

However, our theoretical knowledge of the spectrum of electromagnetic probes from
both the plasma as well as the hadronic phase is still uncertain to some extent. A better
handle on these spectra from theoretical calculations is necessary in order to disentangle
the various sources and to identify the phases reached during the collision. In particular for
the soft part of electromagnetic radiation, this problem represents a challenge to theory
in itself, due to the nonperturbative nature of the photon emission process: Multiple
rescattering of the emitting particles and the Landau-Pomeranchuk-Migdal (LPM) effect
play an important role in the medium for photon energies Eγ ≤ T [9], as well as for
dileptons of an invariant mass in this range.

This problem motivated the present work, in which we will investigate the production
of photons and dileptons from a strongly interacting plasma at finite temperature. After
a short sketch of the insufficiencies of existing calculations, we show how one can reach
an improvement by taking thermal scattering and subsequent off-shell propagation of
the emitting particles in the heat bath into account. The problem is addressed in the
framework of thermal field theory, results are given for a QED plasma as well as for a
QGP within a model incorporating dynamical chiral symmetry breaking. A part of the
results has been presented already in a short paper [10].

In an αs expansion, the lowest order of photon production proceeds via annihilation
(qq̄→ gγ) and Compton (qg→ qγ) processes. In next to leading order (NLO), numerous
corrections to these processes arise, a complete calculation of the order O(αα2

s) has been
achieved in [11]. With an initial quark and gluon distribution specified by distribution
functions f1(E1) and f2(E2), and the final state quark or gluons distribution f3(E3), the
production rate reads

R0 = E
dN0

γ

d3p
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= N
∫ 4∑

i=1

d3pi

2Ei(2π)3
f1(E1)f2(E2)(2π)4δ4(p1 + p2 + p3 − p4)|M |2[1∓ f3(E3)] , (1)

where the last factor takes into account Pauli blocking or Bose enhancement of the quark
or gluon in the final state, and M stands for the elementary cross section considered.

The production of hard (high p⊥) photons in reactions of colliding hadrons has been
calculated using ‘cold’ parton distributions delivered by structure functions and using
M in NLO. For sufficiently high p⊥, very good agreement with the corresponding data is
reached [12], only towards low p⊥ some discrepancy has been reported [13]. This may hint
at the insufficiency of using even NLO calculations in the soft regime, but may equally
well be due to our still insufficient knowledge of the parton distribution functions in the
relevant x and Q2 range, see [14] for an analysis. Even with this minor uncertainty, one
has reached a very good quantitative understanding of photon production.

Now let us look at the same processes in a plasma, where the partons have reached
a thermal distribution. We will consider situations in which the spatial extension of the
plasma is lower than the mean free path of the photons emitted, i.e. ‘white’ radiation in
contrast to thermal black body radiation. Due to the small size of nuclei compared to the
mean free path of an electromagnetically interacting particle, this is always the case for
heavy ion collisions. Using M in lowest order, and taking thermal quark (q), q̄ and gluon
distributions of temperature T results in a production rate R (per unit volume element)
as [15]

R0 = E
dN0

γ

d3p
=

5

9

ααs

2π2
T 2 e−E/T

[
log

ET

m2
+ c0

]
(2)

with some constant c0. This rate diverges when m→ 0, which is the crucial limit of chiral
symmetry restoration for strongly interacting quarks approaching the phase transition
temperature. This unphysical divergence will eventually be shielded by medium effects
on the emission process.

A step towards the calculation of such medium effects has been the application of the
Braaten–Pisarski method of hard thermal loops [16] to this problem [6,17]. The resulting
photon production rate is

RBP = E
dN0

γ

d3p
=

5

9

ααs

2π2
T 2 e−E/T log

c1E

g2T
(3)

with a constant c1 ∼ 3 and the strong coupling constant g. For g2 ∼ c1, the term log(E/T )
reminds us of the validity of this approach only in the region of Eγ � T .

In addition to the thermal masses of the particles aquired in the medium, we now
also consider the scattering of the partons in the medium, which results in an energy
uncertainty as the quark propagates. As we will show below, this is the dominant physical
process for quarks emitting soft photons with energies Eγ ≤ T . Formally, we describe this
off-shellness by a finite width of the quark in analogy to the decay width of an excited
state. After an interaction with the medium which sets the quark off-shell, instead of
interacting again with the medium the quark may also emit a real photon. Thus, the
quark width is directly related to the emission rate of soft photons. Taking into account
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such a spectral width naturally removes the infrared divergences mentioned before, as we
will show in the following, and enables us to give production rates for soft photons.

This paper is organized as follows. In the next section, we present the general formal-
ism of thermally off-shell particles in a heat bath. This includes the calculation of thermal
widths as well as the photon production rate in a gauge invariant manner. Section II.C
gives the comprehensive example of a fermion (quark) in a QED plasma. Although not
being realistic for the QCD case, it allows for simpler and often analytic solutions and
thus for a clear illustration of the relevant physics.

We then turn to the case of the QCD plasma, section III. A crucial aspect of QCD
at low temperatures is the breaking of chiral symmetry. Hence up to the chiral phase
transition temperature we describe the plasma by the Nambu–Jona-Lasinio model, which
incorporates this feature dynamically (Sect. III.A). In the subsequent part of this work we
turn to high-temperature perturbative QCD, with temperature dependent strong coupling
constant αs. Section III.C gives the results for the photon production rates over the entire
range of temperatures and of photon energies, and we discuss the relevance to a variety
of experimental situations in section III.D

II. PHOTON RADIATION IN THERMAL FIELD THEORY

In this section, we first briefly recall the formalism of thermal field theory using spectral
functions, outline how the self energy of a thermal particle is obtained in general, how it
is related to the thermal width and how gauge invariant rates for photon production are
obtained therefrom. We finally illustrate the achievements with the example of a fermion
in a QED plasma.

A. Spectral functions and self energies

For any physical system one would like to have a causal description: Physical particles
e.g. may exert a measurable influence only after their emission. In the framework of
quantum field theory this means that one would like to use causal Green functions or
propagators in the theoretical description. The requirement of causality however touches
two aspects of field theory. It relates the boundary condition in time that a propagator
fulfills to the average occupation number of the state that is propagated.

For a vacuum state, this leads to the well-known Feynman boundary conditions, which
in terms of the free propagator in momentum state translate into the simple +iε- descrip-
tion in the denominator.

At nonzero temperature, the average occupation number of a state is given by a
thermal equilibrium distribution function (Bose-Einstein or Fermi-Dirac). Hence, the
temporal boundary conditions for the propagation of particles at finite temperature are
more complicated than in a vacuum state, they are called the Kubo-Martin-Schwinger
(KMS) condition [18].

This KMS condition leads to a causal propagator with a complicated analytical struc-
ture. It is therefore safer for thermal systems to deviate from the description in terms
of causal propagators. Rather one uses only retarded and advanced propagators, whose
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temporal boundary conditions do not depend on the occupation number of states. It is
well known, how to express a finite temperature perturbation theory in terms of retarded
and advanced propagators (see refs. [19,20] for an extensive discussion).

Mathematically, the retarded and advanced propagators are analytical functions of
their energy parameter in the upper or lower complex half-plane. Analytical functions
however obey the Kramers-Kronig relation, and this implies that the retarded propagator
of an interacting field theory is known completely if only its imaginary part (or spectral
function) A is known along the real axis. Hence, for the retarded quark propagator in
our system we write, for arbitrary complex energy E

SR,A(E,p) =

∞∫
−∞

dE′ Aq(E
′,p)

1

E − E′ ± iε
. (4)

For free particles the spectral function is proportional to a δ-function,

Afree
q = (Eγ0 − pγ +mq) sign(E) δ(E2 − p2 −m2

q) , (5)

which kinematically limits the asymptotic states to be on-shell.
However, as we have argued above, such asymptotically stable states are not present

in a finite temperature system: Each particle is subject to collisions which will add a
statistical (thermal) uncertainty to its energy as function of time (thermal scattering, or
Brownian motion). This indicates that the limit of a δ-like spectral function cannot be
used in interacting thermal systems – which has been proven rigorously in the Narnhofer-
Thirring theorem [21].

One may attribute this to a fundamental property of temperature: A thermal particle
distribution function has a special rest frame, hence corresponds to a breaking of the
Lorentz invariance. It is well-known that a state of broken symmetry requires to chose
adequate basis functions for a quantization. In case of the finite temperature breakdown of
Lorentz invariance, the basis functions turn out to be quantum fields without a mass shell
[22,23]. In other words, the field theoretically correct way to treat a finite temperature
system is in terms of continuous spectral functions.

How to put these two aspects together, i.e., the transformation to retarded/advanced
propagation as well as the perturbative expansion in terms of generalized free fields with
continuous mass spectrum, is discussed in ref. [20]. For the purpose of the present paper,
it is sufficient to choose a parametrization for such a spectral function.

For this parametrization we take as a guideline the idea to be not too far from the
quasi-particle picture, i.e., we make an ansatz for the inverse retarded quark propagator

pµγ
µ −m0

q − ΣR(p) ≈ (p0 ± iγq)γ0 − pγ −mq (6)

with a given self energy function ΣR(p) in the vicinity of p0 = ±
√
p2 +m2

q and |p| � mq.

This implies, that we assume the whole model to be dominated by its infrared sector, see
the remark at the end of this subsection. This ansatz translates into a spectral function
as

Aq(E,p) =
γq

π

γ0 (E2 + Ωq(p)2)− 2Eγp+ 2Emq

(E2 − Ωq(p)2)2 + 4E2γ2
q

. (7)
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Here, γµ = (γ0,γ) is the four-vector of Dirac matrices and Ωq(p)2 = p2 + m2
q + γ2

q . mq

is the dynamical mass of the quark, and its spectral width parameter we label γq . Note
however, that the half-maximum width of the spectral function peak is 2γq .

One may regard this spectral function as the generalization of the standard energy-
momentum relation of eq. (5) to a broader distribution for thermally scattered particles, in
this particular case represented by a double Lorentzian. Note also, that this parametriza-
tion differs from a quasi-particle approximation only by one parameter γq, and in the limit
γq → 0 one recovers the free spectral function (5).

For the self energy function we chose expressions that are obtained in a skeleton
expansion of the full Green function, i.e., we chose Feynman diagrams for this self energy
which are again functionals of the spectral function we wish to determine.

In such an expansion, the one-loop (Fock) diagram, depicted in fig. 1, is the lowest
order term with a non-vanishing imaginary part. In the following, we restrict ourselves
to this lowest order. We consider a model where quarks are coupled to different types of
bosons, to be specified later. The calculation of the Fock self energy with full propagators
is straightforward [20] and gives for the imaginary part

ImΣR(p0,p) = (8)

−π
∫
d3k

(2π)3

∞∫
−∞

dE ΓµAq(E,k) Γν A
µν
B (E − p0,k − p) (nq(E) + nB(E − p0)) .

Here, AB is the boson spectral function, Γµ and Γν are the interaction matrices at the ver-
tices, and nB (nq) is the standard thermal equilibrium Bose (Fermi) distribution functions
at temperature T ,

nB,q(E) =
1

eβE ∓ 1
. (9)

The real part of this self energy function is determined by a dispersion integral, simi-
lar to (4) for the propagator. Note, that the divergence of this integral either requires
renormalization or a cutoff.

Having specified the self-consistency criterion for the quark propagator, we may now
ask for its validity. In particular, one may suspect that representing the complicated quark
spectral function over the whole range of energies and momenta by only two parameters
is an oversimplification. However, we find on the contrary that for the self-consistent Fock
approximation with massless scalar and vector bosons the fermion spectral width does
not depend very much on the momentum [24]. This also applies to pseudoscalar bosons
with nonzero width, as will be used below – and hence our ansatz for the spectral function
is consistent for quark momenta |p| < mq.

For the loop integrals in self energy functions this limitation is in principle violated.
However, due to the the structure of these loop integrals it turns out, that the higher
momentum quark components effectively do not influence the self energy functions as
long as the external momenta are not too big.

We conclude, and have naturally checked this numerically, that also our self-
consistency criterion is valid for quark momenta |p| < mq. Henceforth, we will use
|p| = 0, for which our method for a self-consistent determination of quark mass and
spectral width is a good approximation.
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p = (p0, ~p) k = (k0, ~k)

FIG. 1. Self energy diagrams for the photon production rate.

Left: Fock diagram for the quark self energy contribution,
right: photon polarization diagram including full fermion propagators on both lines.

B. Gauge invariant photon production rates

The width calculated from the quark self energy diagram now enters the photon po-
larization Π at finite temperature, see fig. 1. The imaginary part of the retarded one-loop
polarization function ΠR is [20]

ImΠR
µν(k0,k) = −π e2

q

∫
d3p

(2π)3

∞∫
−∞

dE

Tr [γµAq(E + k0,p+ k)γνAq(E,p)] (nq(E)− nq(E + k0)) , (10)

where eq is the electric charge of the quark. The photon production rate for the hot
plasma is proportional to this imaginary part, summed over the different physical photon
polarization directions.

However, the one-loop polarization tensor violates current conservation and gauge
invariance: kµΠµν 6= 0 and therefore the the standard sum over the photon polarizations
εµενΠµν = Πµ

µ is not gauge invariant and does not necessarily give a meaningful photon
production rate.

This can be traced back to the fact, that the polarization function given above is noth-
ing but the autocorrelation function of the naive fermion current, Πµν ∝

〈
ψγµψ · ψγνψ

〉
.

However, for a generalized free field theory with a continuous mass spectrum, the naive
current ψγµψ is not conserved. Of course, such a theory with a nontrivial spectral function
also has a conserved (electromagnetic) current – but this differs from the naive expression
[25].

Let us briefly discuss the nature of this difference, starting from the lagrangian of a
generalized free field which gives rise to a propagator with certain self energy insertion.
For a one-component fermion field, this would be

L[ψ] = ψ(x) (i∂µγ
µ −m0)ψ(x)−

∫
d4y ψ(x) Σ(x, y)ψ(y) . (11)

Performing a local phase transformation of this field then allows to find a conserved
current
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jµ(x) = ψ(x)γµψ(x)− i
∫
d4y d4z ψ(z) Λµ(z, y; x)ψ(y) . (12)

The function Λµ is a vertex correction function, i.e., it obeys the well-known Ward-
Takahashi identity which for the Fourier transformed quantities reads

(p− q)µΛµ(p, q) = Σ(p) − Σ(q) . (13)

We therefore end up with the conjecture, that starting from a nontrivial spectral function
for the quarks we also need to modify the vertices coupling the quarks to the photon field.

Hence, in order to acquire a gauge invariant photon production rate for a general
fermion self energy, the right diagram of fig. 1 is clearly not sufficient. In principle, only
the autocorrelation function Π̃µν ∝ 〈jµ jν〉 of the conserved current obeys kµΠ̃µν = 0.
Obviously the fact is irrelevant that the corrections are of higher loop order than the
diagram of fig. 1.

Moreover, we have to ask ourselves what the temporal boundary conditions for physical
photon emission are, because in the above lagrangian we have omitted any notion of the
temporal boundary conditions for Σ. These questions have been solved recently [25], here
we only sketch the solution for the present paper.

The answer is provided by our particular ansatz of a quark width which is only depen-
dent on the temperature T but not on the quark momentum, as appropriate for a slow
quark embedded in the medium. In this case, only the j0 component of the current is mod-
ified and correspondingly only the components Π̃0ν = Π̃ν0 are different from the one-loop
result. It is crucial to realize that the space-like components are not modified, Π̃ij = Πij.
With constant retarded quark self energy, and photon momentum kµ = (k, 0, 0, k) the
gauge invariant sum over the polarizations in this particular case reduces to

Π̃µ
µ = Π̃00 − Π̃ii = Π̃00 − Πii = −(Π11 + Π22) . (14)

This may be calculated with the unmodified polarization tensor from eq.(10). The photon
emission rate out of the hot plasma therefore is

R(Eγ , T ) = Eγ
dNγ

d3p
= 2

nB(Eγ, T )

8π3
Im

(
ΠR

11 + ΠR
22

)
=

i

8π3
(Π<

11 + Π<
22) . (15)

This rate is gauge invariant when the polarization tensor is calculated with our in-medium
effective quark propagator.

We would like to note, that interference effects between photons emitted from different
points in space and time are automatically included in this calculation as far as they affect
the single photon rate. This is the case because we calculate the polarization function
Π(x, y) correlating the electromagnetic currents at different space-time points. It is exactly
this effect which has a big influence on the photon emission rate at lower energies, see
next section.

C. QED plasma and astrophysical consequences

In this subsection, we illustrate the physics with the example of a fermion (quark, or
“heavy electron”) interacting electromagnetically in a plasma of temperature T . This can
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FIG. 2. Photon production rate Rγ from an electromagnetically interacting particle of 300

MeV mass in a plasma as a function of the photon energy Eγ for different temperatures T .

be handled to a large extent analytically and thus allows for a clearer understanding of
the mechanism we are treating.

We perform the calculation of the in medium quark propagator self-consistently. To
this end we solve the self-consistency relations (21) using real and imaginary part of the
Fock self energy (8) for massless free photons. This amounts to the multiple scattering
and LPM effect mentioned before within a QED plasma. The cutoff for the determination
of the real part of the self energy function is chosen as Λ +

√
Λ2 +m2

q, with Λ = 650MeV

(see the discussion in section III.A).
Although this width γem is, in principle, a non-analytical function of the temperature

[24], the smallness of the electromagnetic coupling constant allows to approximate it very
well by the lowest order result

γem
q (T ) ≈

5

9
αT · [1−

ReΣV

mq

] ≈
5

9
αT · [1−

10

9

α

π

ΛT

m2
q

] ∼
5

9
αT , (16)

where ReΣV is the Lorentz vector (∝ γ0) component of the fermion self energy function,
and the factor 5/9 is due to the (u,d)- family averaging of electric charge. The purely elec-
trodynamic quark spectral width as function of temperature is plotted in fig. 6, together
with the other contributions to be discussed later.

The photon production rate we obtain from eq. (15) with this width is shown in fig. 2
for various typical values of the temperature. For small photon energies, i.e. very soft
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photons, we find a saturation of the rate below values of Eγ = 2γem
q ≈ 2 · 5/9 · αT . The

factor 2 arises, because the half-maximum width of the Lorentzian spectral function peak
is 2γq in our choice of parameters.

The physical interpretation of this effect is obvious: The emission of low-energy pho-
tons requires unperturbed propagation of the emitter over the wavelength of the photon.
Along its path however the quark is subject to thermal perturbations – and this hinders
the photon emission for for Eγ < 2γq . Our result agrees qualitatively with the conjecture
of Weldon [9]. Moreover, we could clarify the dominant suppression scale to be twice the
spectral width parameter of the emitting particle, or equal to the half-maximum width of
the spectral function peak. In the spirit of the last remark in section II.B, we may state
that this is an interference effect between photons from different points in space and time.

The rate for high energy photons falls off with photon energy Eγ as e−Eγ/T from
the Boltzmann factor. For a particle mass mq � γq this result coincides with previous
calculations of eq.(3) with equivalent parameters. However, in contrast to this calculation,
our result does not employ singular behavior in the limit of mq → 0. This illustrates nicely
how the finite thermal particle width regulates the infrared behavior.

The photon production rate may be approximated as

Rγ
fit =

4γq
E2
γ + 4γ2

q

e−Eγ/T z[T ] , z[T ] ∝

{
T 2 for Eγ � 2γq
T for Eγ � 2γq

. (17)

For all temperatures, the limit Eγ →∞ is determined by the Boltzmann factor e−Eγ/T .
Let us briefly consider the astrophysical consequences of this result. For this we

regard an era of the universe, where the photon energy density dominates the matter
energy density, i.e., 10 MeV ≥ T ≥ 1 MeV Using eq. (17) together with eq. (16), we find
that the photon number density in the early universe is roughly nγ ≈ 2/π2 · T 3, while
the photon energy density is given by ργ ≈ 6/π2 · T 4. These have to be compared to the
standard Bose-Einstein values of n0

γ ≈ 2.4/π2 · T 3, ρ0
γ ≈ 6.49/π2 · T 4. This comparison

implies, that the effective number of degrees of freedom, g? in the total energy density

ρ =
π2

30
g? T 4 (18)

is somewhat reduced by the effect we are considering. This then would lead to a faster ex-
pansion of the universe during the time where our result applies. However, this effect is on
the order of a few percent and therefore in the moment beyond the reach of experimental
observation.

Furthermore we may assume, that in the present spectrum of the cosmic background
radiation the photons have retained the spectral cutoff point from the moment when the
universe became transparent. If we assume this transition to happen at a temperature
of ≈ 1 eV, the effect we are proposing predicts the cosmic microwave background to be
thermal at wavelengths shorter than λcut = π/αT , but leads to a reduction of the long-
wavelength background radiation below its black-body value. Due to the expansion factor
of ' 1000, we estimate the present cutoff wavelength to be approximately λcut ≈ 1 m,
which makes it difficult to observe this deviation.
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=

+ +

(mq, γ
em

q ) (m0, 0)

FIG. 3. Diagrammatic equation for the quark propagator at low temperatures.

Double line = effective quark propagator, wavy line = photon.

III. PHOTON PRODUCTION FROM A STRONGLY INTERACTING PLASMA

We now come to the main topic of this work, the production of photons from a QGP.
For this purpose, we distinguish two temperature regimes. In the low T region, below
and around the phase transition temperature, dynamical chiral symmetry breaking and
its restoration at Tc ∼ 200 MeV plays an important role and has to be incorporated in a
realistic description of the quark dynamics. We do so by using the Nambu–Jona-Lasinio
model as an effective model up to T ∼ Tc, and add to this model the self-consistent
summation of quark-photon Fock diagrams.

In the high temperature limit, chiral symmetry is restored and the coupling is small
enough for a perturbative expansion in the strong coupling constant. In this region, we
therefore use a self-consistent determination of the quark width obtained in perturbative
QCD [26].

In both regimes, nontrivial spectral functions for the respective interacting bosons are
used.

A. Nonperturbative temperature regime

Here, we consider the Nambu–Jona-Lasinio model [27] in the SU(2) version on the
quark level, see [28] for a review and the notations used in the following.

In this effective field theory, the nonperturbative interaction between quark and an-
tiquark fields at low momentum transfer is described by the sum of a scalar and a pseu-
doscalar local interaction, Lint = G[(Ψ(x)Ψ̄(x))2 + (Ψ(x)iγ5τ Ψ̄(x))2] where Ψ = (u, d).
This is understood to be a summation of nonperturbative gluon interactions among the
quark fields. It models the chiral symmetry properties of QCD in the nonperturbative
regime, which is essential to address processes on the energy scale of the temperature.

This effective field theory models the chiral symmetry properties of QCD in the non-
perturbative regime by a quartic self-interaction of quarks. At small temperature, the
dominant contribution to the quark self energy is the tadpole (Hartree) term, which is
expressed in terms of the spectral function as [20]

ΣH = −2GNCNf

∫ d3p

(2π)3

Λq∫
−Λq

dE Tr [Aq(E,p)] nq(E) . (19)
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γNJL
q = γem

q + Im

 +


σ π

FIG. 4. Contributions to the width γq of a quark.

Short dashed line = scalar meson, long dashed line = pion.

Like any nonrenormalizable model, the NJL requires a momentum cutoff Λ, which can be
motivated as a crude incorporation of asymptotic freedom at large Q2. For the present
generalization, this cutoff is shifted to the energy integration,

Λq =
√

Λ2 +m2
q(T ) . (20)

Usually, the temperature dependent quark mass mq(T ) is the solution of the gap equation
mq = m0 + ΣH(mq). With appropriate parameters, this describes the scenario of spon-
taneous chiral symmetry breaking, i.e., the transition from a current quark mass m0 ≈ 5
MeV to the constituent quark mass mq ≈ 1/3 × the nucleon mass, and its restoration at
a transition temperature Tc. The only parameters were chosen as m0 = 5 MeV, Λ = 0.65
GeV and G = 5.1 GeV−2, and result in Tc = 193 MeV and a vacuum mass of mπ = 140
MeV for the pion and mq = 332 MeV for the constituent quark (135 MeV resp. 331 MeV
without photons).

The Fock self energy is the next-to-leading order contribution in a 1/Nc expansion
[29]. We consider quarks with four-momentum (p0,p) = (mq, 0), hence we can decompose
the retarded Fock contribution to the self energy in a (complex) scalar and a vector part
as ΣFock = ΣS + γ0ΣV .

The photon Fock contribution is added to the Hartree self energy, and instead of the
gap equation we solve eq. (6) for the mass and width of the effective quark field. Split
into real and imaginary part this reads

mqγq = −ImΣV (mq, 0)
(
mq − ReΣV (mq, 0)

)
− ImΣS(mq, 0)

(
m0 + ΣH + ReΣS(mq, 0)

)
−γ2

q =
(
mq − ReΣV (mq, 0)

)2
−
(
m0 + ΣH + ReΣS(mq, 0)

)2

−
(
(ImΣV (mq, 0))2 − (ImΣS(mq, 0))2

)
. (21)

Here, ImΣV is an even function of p0, ImΣS is an odd function of p0. For γq → 0, the
above equations reduce to the standard gap equation of the NJL model.

The NJL model furthermore describes two bound states which are regarded as effective,
T -dependent pseudoscalar π-meson and scalar σ-meson.
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The traditional way to determine the masses mB of these collective modes is to solve
the equation [28]

1− 2GReΠ(mB, 0) = 0 , (22)

with Π the corresponding polarization function determined as a dispersion integral over
eq. (10). As a cutoff for the dispersion integral one uses ±2Λq according to eq. (20).

Within our formalism we use the following ansatz for the retarded boson propagator
along the real axis:

kµk
µ −m2 − ΠR(k) = (k0 − (ωB(k) − iγB)) (k0 + (ωB(k) + iγB)) (23)

with ω2
B = m2

B + k2. This translates into a spectral function as

AB(E,k) =
1

π

2EγB

(E2 − ΩB(k)2)2 + 4E2γ2
B

, (24)

with Ω2
k = ωB(k)2 + γ2

B .
The parameters mB and γB are determined from the equations

1− 2GReΠ(mB, 0) + (Gπσ(mB, 0))2 = 0

mBGπσ(mB, 0) = γB . (25)

The mesonic Fock contributions to the quark self energy are treated only perturbatively,
i.e., their imaginary parts are used to modify the quark width according to fig. 4 and their
influence on the quark mass is neglected [29].

To check the consistency of this approximation, we also performed a self consistent
summation of the meson Fock diagrams, which gives rise to a small correction of the
constituent quark mass as well as the meson masses in our extended NJL model. However,
such a summation breaks chiral symmetry explicitly - and one may expect, that the mass
shift is canceled by other diagrams. For the purpose of the present paper we therefore
chose the perturbative treatment of the meson Fock self energy contributions as described
above.

Physically, our approach amounts to consider photon emission processes, which are
initiated by the interaction of the quark with a single hot meson. The resulting quark
width γq is plotted in fig. 6. For low temperatures, we again find γ ∝ T for each channel.
Up to a temperature of ≈ 150 MeV, the quark width γq is in fact dominated by the purely
electrodynamic contribution. This indicates, that photons should be taken into account
even for strongly interacting systems at such temperatures.

Due to the quasi–Goldstone mode of the pion, its contribution to the quark width
remains negligible up to the Mott temperature TM = 212 MeV, which is defined by
mπ(TM) = 2mq(TM) as the point where the pion can dissociate in a qq̄ pair. For T > TM ,
the pionic contribution to the quark spectral width is actually dominant. Towards higher
temperatures, the competing effect of an increase of the mass of the π (now a resonance)
again turns the width down.

One may argue at this point, that in the NJL model quarks are not confined. However,
the above results may be translated to other models as well: They represent nothing but
a critical opalescence to photons in the vicinity of the chiral phase transition. Hence we
expect the drastic increase of the effective γ around Tc to be quite independent of the
model used.
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Πgluon = +

+ +

Σq =

FIG. 5. Feynman diagrams used in the calculation of the effective quark and gluon propaga-

tor at high temperature. Each line represents an effective propagator here, dashed are the ghost

fields.

B. Perturbative QCD for high temperature plasma

In the high temperature limit, a calculation within perturbative QCD becomes sensi-
ble. Furthermore, non-abelian gauge invariance becomes an imperative of the calculation.
For each of the degrees of freedom, i.e., quarks, transverse and longitudinal gluons and
ghost fields, one has to consider an effective propagator similar to those we have discussed
before. Here we will make use of the results of ref. [26], where, in the same spirit as dis-
cussed for the electromagnetic case, a high-temperature self-consistent QCD calculation
was carried out.

Various self energy diagrams have been taken into account in this work, including –
compare this to the QED case – a gluon Fock diagram for the quarks as well as polariza-
tion functions for the boson fields. The photon Fock diagram may be neglected in this
temperature regime, since its contribution is much smaller than the gluon Fock contri-
bution (see fig. 6). Fig. 5 contains a list of the diagrams, which were self-consistently
summed in the infrared limit. Within this calculation, the quark width is obtained as

γq = 0.271gT (forNf = 2, Nc = 3) . (26)

To the same order of accuracy, and in the spirit of the explanation in section II.B, we use

14



FIG. 6. Contributions to the width γq of a quark. Thick dashed line: total quark width,

calculated with the NJL model at low temperature and with perturbative QCD at high temper-

ature.

the running coupling constant

g2
s(Q

2) = 4π ·
12π

(33− 2Nf ) log
(
Q2/Λ2

QCD

) (27)

with Nf = 2 for up and down flavors, only and ΛQCD=0.2 GeV. This gives the proper
match to the two-flavor NJL calculation towards low temperatures. Due to their larger
current quark mass, the strange quarks will not give a large contribution at the temper-
atures we consider. We relate the mean Q2 to the temperature by < Q2 >≈ (3T )2. The
resulting quark width reads

γq =
2.858√

log
[
15.0 · T

GeV

] . (28)

The resulting spectral width of the quark is plotted in fig. 6, together with the low
temperature result obtained in the previous subsection. The spectral width of the quark
obtained in this temperature regime matches with the NJL result around the chiral phase
transition temperature. We consider this an argument in favor of the consistency of our
calculations.
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FIG. 7. Photon production rate R as function of the photon energy for different temperatures.

Thick lines: Temperatures 50 – 250 MeV (dashed), our calculation using the NJL model.

Thin line: Cutoff point Eγ = 2γq.

We have argued at the end of the preceding subsection, that the pronounced rise of the
quark width (≡ the strong decrease of the photon mean free path) is a model independent
expectation. From the result of the present subsection it may be deduced, that

γq(T ) '

{
0.004 · T for T � Tc

1.0 · T for T � Tc
, (29)

with a pronounced rise around the chiral phase transition temperature. We stress that
while the detailed shape of this function in the transition region may be model dependent,
the fact that a sharp rise occurs here is a general result of finite temperature QCD.

C. Results for photon production rates

First we discuss the photon emission rate obtained from eq.(15) below the chiral phase
transition temperature. They are plotted in fig. 7, and we find a great similarity of the
rate with the results plotted in fig. 2 for the purely electromagnetic case. However,
at temperatures T > TM ≈ 212 MeV, the quark width parameter is dominated by the
mesonic contributions, which leads to a much higher saturation scale γq � γem

q . In fig. 7
this rise is also documented by the turning of the curve Eγ = 2γq , see the thin continuous
line.

16



FIG. 8. Photon production rate R from a QGP as function of the photon energy for different

temperatures.

Thick lines: T=200 and 250 MeV (dashed), our calculation using eq. (28).

Thin lines: T=200 and 250 MeV (dashed), our calculation using the NJL model.

We now turn to the region of the chiral phase transition. In fig. 8, we compare the NJL
calculations at temperature T=200 MeV (250 MeV) with the corresponding perturbative
QCD calculations. The resulting photon production rates are different at T=200 MeV,
i.e., very close to the chiral phase transition temperature. The reason for this is clearly,
that the perturbative QCD calculation is no longer applicable here.

Very good agreement is reached at a temperature of T=250 MeV, which is of course
due to the matching values of γq at this temperature, see fig. 6.

In fig. 9, we have plotted the perturbative QCD results for temperatures T=250 and
400 MeV, i.e., in a region where one would not trust the NJL model. The figure also
contains a plot of the photon production rate obtained with the method of hard thermal
loops, eq. (3). Obviously, the results at high photon energies agree for T=250 MeV, but
less so for T=400 MeV. This can be attributed to our use of a running coupling constant.
At lower photon energies however, where according to our result the photon radiation is
cut off due to the finite mean free path of a particle, the result of the hard thermal loop
calculation is not usable. Fig. 9 also contains the NJL result for T=250 MeV, with quite
good agreement of the three different methods at this temperature and for Eγ > 1 GeV.

The levelling off of the rates at low photon energy is due to the inclusion of coherence
(LPM) effects. For lepton pairs, this effect can be compared to the results of ref. [30],
where this effect was introduced “by hand”, whereas in our calculation it is automatically
included in the formalism.
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FIG. 9. Photon production rate R from a QGP as function of the photon energy for two

different temperatures.

Thick solid lines: T=250 and 400 MeV, our calculation using perturbative QCD, eq. (28)

Dashed line: T=250 MeV, our calculation using the NJL model

Thin lines: Calculation with the method of hard thermal loops, [6]

In fig. 10, we show the photon emission rate at three different photon energies as a
function of temperature. Comparing the electromagnetic case (thin lines) to the model
including the quark-meson interaction, we find a surprising result: In the region of the
chiral phase transition, the low-energy photon production rate drops with increasing tem-
perature. Eventually the radiation rate is degenerate for all energies Eγ < 2γq (see the
flat behavior of the curves in fig. 7). In view of eq. (17), this is understood as a dominance
of the saturation effect over the increase of temperature.

D. Relevance to experimental data

We now briefly give an overview of existing or future experiments, in the order of
increasing energy, which observe photons in reactions of hadronic character, and discuss
the relevance of our rate calculations to them.

Let us first consider very soft (for an experimentalist’s scale) photons, where Eγ ∼ 1 –
100 MeV. Photons in this energy region have been measured in several experiments and
an enhancement in the low p⊥ region compared to QED bremsstrahlung was observed in
reactions such as K+p [31] and π−p [32]. It has been proposed that the observed excess
might stem from the radiation of cold drops of quark–gluon plasma, which would hadronize
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FIG. 10. Photon production rate R from as function of temperature T .

Photon energy 10 MeV (solid), 100 MeV (dashed) and 200 MeV (dash-dotted).

Thin lines: purely electromagnetic width γem
q

Thick lines, curves from left: Our calculation using the NJL model

Thick lines, curves from right: Our calculation using perturbative QCD, eq. (28)

only slowly and thus have a long time to radiate [33], for an overview see [34]. Since these
are soft photons, the effect of interference (LPM) is necessarily very strong. Accordingly,
the rates we obtain are smaller than those calculated from incoherent production process,
which was considered in previous calculations.

Using our results for the rate as shown in fig. 10, we estimate the expected photon
yield from such a cold plasma drop of some size R at a temperature T . From uncertainty,
R ≥ 1/p where p is the mean momentum of a plasma particle, and thus cold drops need
to be of considerable size. For a drop of volume V and lifetime τ at a temperature T ,
the differential cross section of photon production at a transverse momentum p⊥ can be
expressed as

dσ

dp⊥
=

V τ

(0.2fm)4
2πp⊥σABR(Eγ , T ) (30)

where R(Eγ , T ) is the invariant rate and σAB is the total cross section of the reaction
A+B under study.

As an example, let us consider the reaction K+p → γX where the p⊥ spectrum of
photons was measured [31]. At a temperature of 50 MeV, the invariant rate of photons
of say Eγ = 10 MeV is, reading from fig. 10, about 10−9 mb/GeV. Taking a drop lifetime
τ ∼ R ∼ 10 fm and a cross section of σK+p = 16 mb results in an estimate of the photon
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yield of dσ/dp⊥ ∼ 3 · 10−2 mb/GeV. This is to be compared with the measured value of
dσ/dp⊥|exp ∼ 200 mb/GeV, which is much larger than the rate estimated from a cold
plasma drop emitting photons. As we noted before, previous results which had arrived at
numbers comparable to the experimental ones had not taken into account the coherence
(LPM) effect which dramatically reduces the rate. We thus have to conclude that such a
mechanism can not account for the observed rates of very soft photons, and therefore the
‘soft photon puzzle’ remains to be solved.

Now consider higher energies of the photon in the range Eγ ≥ 100 MeV. In recent
heavy ion experiments at ultrarelativistic energies, it is hoped to find some hints of a
phase transition the system might, possibly partially, go through. Apart from measuring
photons, experiments also observe lepton pairs which suffer less from coming together
with a large background. For both electromagnetic probes, an enhancement might hint
at the new phase.

For photons, the invariant rate as shown in figs. 9 and 10 gives our result for the QGP,
and needs to be folded with the space-time evolution of the system such as calculated in
[7]. For this purpose, the invariant rate may be written in terms of the photon rapidity y
and transverse momentum p⊥ as

E
dσ

d3p
=

1

2πpt

dσ

dptdy
. (31)

Photons with a low virtuality can be converted into dileptons by use of the soft photon
approximation,

Rl+l− = E+E−
dNll

dp3
+dp

3
−

≈
α

2π2M2
Eγ

dN

d3k
, (32)

and improved versions thereof [35]. This allows the use of the results presented in this
work to the calculation of dilepton rates as well. Again, a space-time integration needs
to be performed to compute the yield for a heavy ion reaction at some impact parameter,
which is related to the measured multiplicity or total transverse energy.

This integration over the space-time evolution of the collision was performed by use
of the photon rates calculated from hard thermal loops [7]. The system proceeds from an
initial QGP through a mixed phase to a purely hadronic phase in the final state. Since the
initial plasma phase is short-lived and of a similar temperature than later phases under
the conditions studied, and the QGP does not shine very much brighter than a mixed
or hadronic phase of the same temperature, the yield of photons from the QGP is much
smaller than that of the other phases, typically more than an order of magnitude. As
can be seen from fig. 9, our results in the range of photon energies Eγ ≥ 100 MeV are
similar to those from hard thermal loops. Therefore, the conclusion remains, that the
scarce photons from a plasma phase are overwhelmed by those from the later stages of
the reaction, and the same is the case for dileptons. This applies to the application of
our result to current experiments such as Ceres, WA80/98 and Helios. In particular, an
enhancement seen in these experiments can not be accounted for by a direct contribution
of the plasma phase, but must be of different origin (which, of course, may still be related
to a phase transition).

This situation might change in favor of the quark–gluon plasma when going to higher
energies. Here the rate of electromagnetic probes originating in the plasma rises strongly
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with increasing temperature of the QGP (see fig.9), while the temperature at which the
hadronic reactions occur does not change. Experiments which are under preparation at
RHIC and LHC are planning to observe photons and dileptons and thus it is hoped that
these experiments might see the QGP in sufficiently bright light in order to uniquely
identify this phase.

IV. CONCLUSIONS

In this work, we calculated gauge invariant rates for the production of low and high en-
ergy photons from a hot plasma in the framework of thermal field theory with generalized
free fields. For illustration, we studied a QED plasma and discussed possible astrophysi-
cal consequences. The main purpose of this work, the calculation of photon rates from a
quark–qluon plasma, was achieved over the entire range of temperatures in a composition
of two scenarios. For high temperature, perturbative QCD has been used, while around
the chiral phase transition region, the nonperturbative NJL model was employed. Both
results were found to match smoothly. This is a very satisfactory result and might be of
more general relevance than in this particular case. For high photon energies, our result
are similar to those obtained previously in the hard thermal loops technique, which is
applicable only in the high temperature regime.

It was one of the main motivations of the present work to demonstrate how meaningful
production rates may be obtained at finite temperature for soft photons, where the coher-
ence (LPM) effect plays an important role. We emphasize that the qualitative properties
of the soft photon rates, such as the saturation effect towards low temperatures, follow
from general physical considerations as we discussed, and are in particular independent
of the particular model we used. In particular, the decrease of the production rate of
soft photons in the temperature region of the phase transition is a very intriguing result,
which also might have observable consequences.

We pointed out that at presently reachable energies, photon production in an ultra-
relativistic heavy ion collision is dominated by later phases of the reaction rather than
an initially present QGP. However, at the energies of currently planned experiments, the
plasma temperatures might be high enough to allow a direct identification of this phase.
Here, the precise rate for the production of photons of a given energy as we calculated it
is a very important tool for the for the interpretation of the experimental results.

From our results one may furthermore conclude, that quantum field theory in terms
of generalized free fields with reasonable parametrizations of spectral functions is a valu-
able method for the analysis of relativistic heavy ion collisions. The strong gap between
quantum field theory as a formalism and its predictive power for many-body experiments,
which has persisted for some time, is hopefully bridged by the application of thermal field
theory. We are currently undertaking an effort to derive simple parametrizations of the
photon production rate that might be used as input for simulation codes.
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