23,675 research outputs found
"It's the real thing": performance and murder in Sweden.
The article investigates contemporary experimental theatre in Sweden. It sums up and probes the implications of Sju tre (1999), the most controversial theatre production in Sweden in modern times. Lars Nor'n, the playwright and director, staged a dialogue involving three real convicts, of whom two were outspoken Nazis. The article explores the uncertain boundaries between aesthetic, ethical, and political issues with ramifications regarding the wider public opinion in Sweden, on racism and crime. It is methodologically motivated by reception research, performativity and idealogical discourse. By virtue of its performative impact, the theatrical event proved to be directly linked with critical questions of democracy, although conceivably at the expense of the artistic integrity of the director and the theatre as creator of public opinion. The article points to a paradox of democracy whereby hate speech is at once allowed and unjustified in the theatre as national arena. The actors are described and analysed as parasites in a societal body, that in Sju tre, becomes politically epitomised
iPTF16abc and the population of Type Ia supernovae: Comparing the photospheric, transitional and nebular phases
Key information about the progenitor system and the explosion mechanism of
Type Ia supernovae (SNe~Ia) can be obtained from early observations, within a
few days from explosion. iPTF16abc was discovered as a young SN~Ia with
excellent early time data. Here, we present photometry and spectroscopy of the
SN in the nebular phase. A comparison of the early time data with a sample of
SNe~Ia shows distinct features, differing from normal SNe~Ia at early phases
but similar to normal SNe~Ia at a few weeks after maximum light (i.e. the
transitional phase) and well into the nebular phase. The transparency
timescales () for this sample of SNe~Ia range between 25 and 41
days indicating a diversity in the ejecta masses. also weakly correlates
with the peak bolometric luminosity, consistent with the interpretation that
SNe with higher ejecta masses would produce more Ni. Comparing the
and the maximum luminosity, L\, distribution of a sample of SNe~Ia to
predictions from a wide range of explosion models we find an indication that
the sub-Chandrasekhar mass models span the range of observed values. However,
the bright end of the distribution can be better explained by Chandrasekhar
mass delayed detonation models, hinting at multiple progenitor channels to
explain the observed bolometric properties of SNe~Ia. iPTF16abc appears to be
consistent with the predictions from the M models.Comment: 13 pages, 8 figures, accepted for publication in MNRA
Understanding the Structural Scaling Relations of Early-Type Galaxies
We use a large suite of hydrodynamical simulations of binary galaxy mergers
to construct and calibrate a physical prescription for computing the effective
radii and velocity dispersions of spheroids. We implement this prescription
within a semi-analytic model embedded in merger trees extracted from the
Bolshoi Lambda-CDM N-body simulation, accounting for spheroid growth via major
and minor mergers as well as disk instabilities. We find that without disk
instabilities, our model does not predict sufficient numbers of intermediate
mass early-type galaxies in the local universe. Spheroids also form earlier in
models with spheroid growth via disk instabilities. Our model correctly
predicts the normalization, slope, and scatter of the low-redshift size-mass
and Fundamental Plane relations for early type galaxies. It predicts a degree
of curvature in the Faber-Jackson relation that is not seen in local
observations, but this could be alleviated if higher mass spheroids have more
bottom-heavy initial mass functions. The model also correctly predicts the
observed strong evolution of the size-mass relation for spheroids out to higher
redshifts, as well as the slower evolution in the normalization of the
Faber-Jackson relation. We emphasize that these are genuine predictions of the
model since it was tuned to match hydrodynamical simulations and not these
observations.Comment: Submitted to MNRA
Molecular clouds in the centers of galaxies: Constraints from HCN and CO-13 line emission
We have searched for HCN J=1-0 line emission in the centers of 12 galaxies and have detected it in 10 of them. We have obtained complementary data on J=1-0 and 2-1 transitions of CO-12 and CO-13 in these systems. The ratio of integrated intensities, I(CO 1-0)/I(HCN 1-0) = 25 +/- 11 for this sample. We find that HCN emission of this strength can be produced under conditions of subthermal excitation. In combination with the line ratios in CO and CO-13, HCN puts constraints on the mean conditions of molecular clouds and on the mix of cloud types within the projected beam
Atomic Processes in Planetary Nebulae and H II Regions
Spectroscopic studies of Planetary Nebulae (PNe) and H {\sc ii} regions have
driven much development in atomic physics. In the last few years the
combination of a generation of powerful observatories, the development of ever
more sophisticated spectral modeling codes, and large efforts on mass
production of high quality atomic data have led to important progress in our
understanding of the atomic spectra of such astronomical objects. In this paper
I review such progress, including evaluations of atomic data by comparisons
with nebular spectra, detection of spectral lines from most iron-peak elements
and n-capture elements, observations of hyperfine emission lines and analysis
of isotopic abundances, fluorescent processes, and new techniques for
diagnosing physical conditions based on recombination spectra. The review is
directed toward atomic physicists and spectroscopists trying to establish the
current status of the atomic data and models and to know the main standing
issues.Comment: 9 pages, 1 figur
Gibbs Ensembles of Nonintersecting Paths
We consider a family of determinantal random point processes on the
two-dimensional lattice and prove that members of our family can be interpreted
as a kind of Gibbs ensembles of nonintersecting paths. Examples include
probability measures on lozenge and domino tilings of the plane, some of which
are non-translation-invariant.
The correlation kernels of our processes can be viewed as extensions of the
discrete sine kernel, and we show that the Gibbs property is a consequence of
simple linear relations satisfied by these kernels. The processes depend on
infinitely many parameters, which are closely related to parametrization of
totally positive Toeplitz matrices.Comment: 6 figure
Constant net-time headway as key mechanism behind pedestrian flow dynamics
We show that keeping a constant lower limit on the net-time headway is the
key mechanism behind the dynamics of pedestrian streams. There is a large
variety in flow and speed as functions of density for empirical data of
pedestrian streams, obtained from studies in different countries. The net-time
headway however, stays approximately constant over all these different data
sets. By using this fact, we demonstrate how the underlying dynamics of
pedestrian crowds, naturally follows from local interactions. This means that
there is no need to come up with an arbitrary fit function (with arbitrary fit
parameters) as has traditionally been done. Further, by using not only the
average density values, but the variance as well, we show how the recently
reported stop-and-go waves [Helbing et al., Physical Review E, 75, 046109]
emerge when local density variations take values exceeding a certain maximum
global (average) density, which makes pedestrians stop.Comment: 7 pages, 7 figure
Quantum two-level systems in Josephson junctions as naturally formed qubits
The two-level systems (TLSs) naturally occurring in Josephson junctions
constitute a major obstacle for the operation of superconducting phase qubits.
Since these TLSs can possess remarkably long decoherence times, we show that
such TLSs can themselves be used as qubits, allowing for a well controlled
initialization, universal sets of quantum gates, and readout. Thus, a single
current-biased Josephson junction (CBJJ) can be considered as a multiqubit
register. It can be coupled to other CBJJs to allow the application of quantum
gates to an arbitrary pair of qubits in the system. Our results indicate an
alternative way to realize superconducting quantum information processing.Comment: Reference adde
Aperiodic tumbling of microrods advected in a microchannel flow
We report on an experimental investigation of the tumbling of microrods in
the shear flow of a microchannel (40 x 2.5 x 0.4 mm). The rods are 20 to 30
microns long and their diameters are of the order of 1 micron. Images of the
centre-of-mass motion and the orientational dynamics of the rods are recorded
using a microscope equipped with a CCD camera. A motorised microscope stage is
used to track individual rods as they move along the channel. Automated image
analysis determines the position and orientation of a tracked rods in each
video frame. We find different behaviours, depending on the particle shape, its
initial position, and orientation. First, we observe periodic as well as
aperiodic tumbling. Second, the data show that different tumbling trajectories
exhibit different sensitivities to external perturbations. These observations
can be explained by slight asymmetries of the rods. Third we observe that after
some time, initially periodic trajectories lose their phase. We attribute this
to drift of the centre of mass of the rod from one to another stream line of
the channel flow.Comment: 14 pages, 8 figures, as accepted for publicatio
- …