8,219 research outputs found

    Deep into the Water Fountains: The case of IRAS 18043-2116

    Get PDF
    (Abridged) The formation of large-scale (hundreds to few thousands of AU) bipolar structures in the circumstellar envelopes (CSEs) of post-Asymptotic Giant Branch (post-AGB) stars is poorly understood. The shape of these structures, traced by emission from fast molecular outflows, suggests that the dynamics at the innermost regions of these CSEs does not depend only on the energy of the radiation field of the central star. Deep into the Water Fountains is an observational project based on the results of programs carried out with three telescope facilities: The Karl G. Jansky Very Large Array (JVLA), The Australia Telescope Compact Array (ATCA), and the Very Large Telescope (SINFONI-VLT). Here we report the results of the observations towards the WF nebula IRAS 18043-2116: Detection of radio continuum emission in the frequency range 1.5GHz - 8.0GHz; H2_{2}O maser spectral features and radio continuum emission detected at 22GHz, and H2_{2} ro-vibrational emission lines detected at the near infrared. The high-velocity H2_{2}O maser spectral features, and the shock-excited H2_{2} emission detected could be produced in molecular layers which are swept up as a consequence of the propagation of a jet-driven wind. Using the derived H2_{2} column density, we estimated a molecular mass-loss rate of the order of 10910^{-9}M_{\odot}yr1^{-1}. On the other hand, if the radio continuum flux detected is generated as a consequence of the propagation of a thermal radio jet, the mass-loss rate associated to the outflowing ionized material is of the order of 105^{-5}M_{\odot}yr1^{-1}. The presence of a rotating disk could be a plausible explanation for the mass-loss rates estimated.Comment: 10 pages, 5 figures. Accepted for publication in A&

    Integral Field Spectroscopy of HH 262: The Spectral Atlas

    Full text link
    HH 262 is a group of emitting knots displaying an "hour-glass" morphology in the Halpha and [SII] lines, located 3.5' to the northeast of the young stellar object L1551-IRS5, in Taurus. We present new results of the kinematics and physical conditions of HH 262 based on Integral Field Spectroscopy covering a field of 1.5'x3', which includes all the bright knots in HH 262. These data show complex kinematics and significant variations in physical conditions over the mapped region of HH 262 on a spatial scale of <3". A new result derived from the IFS data is the weakness of the [NII] emission (below detection limit in most of the mapped region of HH 262), including the brightest central knots. Our data reinforce the association of HH 262 with the redshifted lobe of the evolved molecular outflow L1551-IRS5. The interaction of this outflow with a younger one, powered by L1551 NE, around the position of HH 262 could give rise to the complex morphology and kinematics of HH 262.Comment: Accepted for publication in MNRA

    Flux-cutting and flux-transport effects in type-II superconductor slabs in a parallel rotating magnetic field

    Get PDF
    The magnetic response of irreversible type-II superconductor slabs subjected to in-plane rotating magnetic field is investigated by applying the circular, elliptic, extended-elliptic, and rectangular flux-line-cutting critical-state models. Specifically, the models have been applied to explain experiments on a PbBi rotating disk in a fixed magnetic field Ha{\bm H}_a, parallel to the flat surfaces. Here, we have exploited the equivalency of the experimental situation with that of a fixed disk under the action of a parallel magnetic field, rotating in the opposite sense. The effect of both the magnitude HaH_a of the applied magnetic field and its angle of rotation αs\alpha_s upon the magnetization of the superconductor sample is analyzed. When HaH_a is smaller than the penetration field HPH_P, the magnetization components, parallel and perpendicular to Ha{\bm H_a}, oscillate with increasing the rotation angle. On the other hand, if the magnitude of the applied field, HaH_a, is larger than HPH_P, both magnetization components become constant functions of αs\alpha_s at large rotation angles. The evolution of the magnetic induction profiles inside the superconductor is also studied.Comment: 12 pages, 29 figure

    Caracterización de la estructura de las sustracciones en las que estudiantes universitarios cometen errores

    Get PDF
    La resolución correcta de las operaciones elementales es uno de los objetivos de la educación obligatoria en todo el mundo aunque no siempre se consigue (López y Sánchez, 2009). En concreto, referido a la sustracción, de los 535 estudiantes universitarios de la Universidad de Salamanca que completaron el cuestionario validado de 20 sustracciones de VanLehn (1990), sólo el 24’1% realizó correctamente todas las sustracciones (Rodríguez y Sánchez, 2015). En este trabajo se pretende analizar las características de las sustracciones en cuya resolución los estudiantes universitarios cometieron algún tipo de error

    High temperature behavior of Sr-doped layered cobaltites Y(Ba1-xSrx)Co2O5.5: phase stability and structural properties

    Full text link
    In this article we present a neutron diffraction in-situ study of the thermal evolution and high-temperature structure of layered cobaltites Y(Ba, Sr)Co2 O5+{\delta}. Neutron thermodiffractograms and magnetic susceptibility measurements are reported in the temperature range 20 K <= T <= 570 K, as well as high resolution neutron diffraction experiments at selected temperatures. Starting from the as-synthesized samples with {\delta} ~ 0.5, we show that the room temperature phases remain stable up to 550 K, where they start loosing oxygen and transform to a vacancy-disordered "112" structure with tetragonal symmetry. Our results also show how the so-called "122" structure can be stabilized at high temperature (around 450 K) in a sample in which the addition of Sr at the Ba site had suppressed its formation. In addition, we present the structural and magnetic properties of the resulting samples with a new oxygen content {\delta} ~ 0.25 in the temperature range 20 K <= T <= 300 K
    corecore