44 research outputs found

    Suppression of Allograft Rejection by Tim-1-Fc through Cross-Linking with a Novel Tim-1 Binding Partner on T Cells

    Get PDF
    Engagement of T-cell immunoglobulin mucin (Tim)-1 on T cells with its ligand, Tim-4, on antigen presenting cells delivers positive costimulatory signals to T cells. However, the molecular mechanisms for Tim-1-mediated regulation of T-cell activation and differentiation are relatively poorly understood. Here we investigated the role of Tim-1 in T-cell responses and allograft rejection using recombinant human Tim-1 extracellular domain and IgG1-Fc fusion proteins (Tim-1-Fc). In vitro assays confirmed that Tim-1-Fc selectively binds to CD4+ effector T cells, but not dendritic cells or natural regulatory T cells (nTregs). Tim-1-Fc was able to inhibit the responses of purified CD4+ T cells that do not express Tim-4 to stimulation by anti-CD3/CD28 mAbs, and this inhibition was associated with reduced AKT and ERK1/2 phosphorylation, but it had no influence on nTregs. Moreover, Tim-1-Fc inhibited the proliferation of CD4+ T cells stimulated by allogeneic dendritic cells. Treatment of recipient mice with Tim-1-Fc significantly prolonged cardiac allograft survival in a fully MHC-mismatched strain combination, which was associated with impaired Th1 response and preserved Th2 and nTregs function. Importantly, the frequency of Foxp3+ cells in splenic CD4+ T cells was increased, thus shifting the balance toward regulators, even though Tim-1-Fc did not induce Foxp3 expression in CD4+CD25− T cells directly. These results indicate that Tim-1-Fc can inhibit T-cell responses through an unknown Tim-1 binding partner on T cells, and it is a promising immunosuppressive agent for preventing allograft rejection

    Tim-3 Negatively Regulates IL-12 Expression by Monocytes in HCV Infection

    Get PDF
    T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting CD14+ monocyte/macrophages (M/MØ) and functions as a cap to block IL-12, a key pro-inflammatory cytokine linking innate and adaptive immune responses. Tim-3 expression is significantly reduced and IL-12 expression increased upon stimulation with Toll-like receptor 4 (TLR4) ligand - lipopolysaccharide (LPS) and TLR7/8 ligand - R848. Notably, Tim-3 is over-expressed on un-stimulated as well as TLR-stimulated M/MØ, which is inversely associated with the diminished IL-12 expression in chronically HCV-infected individuals when compared to healthy subjects. Up-regulation of Tim-3 and inhibition of IL-12 are also observed in M/MØ incubated with HCV-expressing hepatocytes, as well as in primary M/MØ or monocytic THP-1 cells incubated with HCV core protein, an effect that mimics the function of complement C1q and is reversible by blocking the HCV core/gC1qR interaction. Importantly, blockade of Tim-3 signaling significantly rescues HCV-mediated inhibition of IL-12, which is primarily expressed by Tim-3 negative M/MØ. Tim-3 blockade reduces HCV core-mediated expression of the negative immunoregulators PD-1 and SOCS-1 and increases STAT-1 phosphorylation. Conversely, blocking PD-1 or silencing SOCS-1 gene expression also decreases Tim-3 expression and enhances IL-12 secretion and STAT-1 phosphorylation. These findings suggest that Tim-3 plays a crucial role in negative regulation of innate immune responses, through crosstalk with PD-1 and SOCS-1 and limiting STAT-1 phosphorylation, and may be a novel target for immunotherapy to HCV infection

    Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken

    Get PDF
    Background: The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. Results: Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. Conclusion: Expression profiles obtained from public RNA-seq datasets - despite being generated by different laboratories using different methodologies - can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species

    Clearance of apoptotic cells: implications in health and disease

    Get PDF
    Recent advances in defining the molecular signaling pathways that regulate the phagocytosis of apoptotic cells have improved our understanding of this complex and evolutionarily conserved process. Studies in mice and humans suggest that the prompt removal of dying cells is crucial for immune tolerance and tissue homeostasis. Failed or defective clearance has emerged as an important contributing factor to a range of disease processes. This review addresses how specific molecular alterations of engulfment pathways are linked to pathogenic states. A better understanding of the apoptotic cell clearance process in healthy and diseased states could offer new therapeutic strategies

    Mast cell activation is enhanced by Tim1: Tim4 interaction but not by Tim-1 antibodies

    Get PDF
    Polymorphisms in the T cell (or transmembrane) immunoglobulin and mucin domain 1 (TIM-1) gene, particularly in the mucin domain, have been associated with atopy and allergic diseases in mice and human. Genetic- and antibody-mediated studies revealed that Tim-1 functions as a positive regulator of Th2 responses, while certain antibodies to Tim-1 can exacerbate or reduce allergic lung inflammation. Tim-1 can also positively regulate the function of B cells, NKT cells, dendritic cells and mast cells. However, the precise molecular mechanisms by which Tim-1 modulates immune cell function are currently unknown. In this study, we have focused on defining Tim-1-mediated signaling pathways that enhance mast cell activation through the high affinity IgE receptor (FceRI). Using a Tim-1 mouse model lacking the mucin domain (Tim-1 Dmucin;), we show for the first time that the polymorphic Tim-1 mucin region is dispensable for normal mast cell activation. We further show that Tim-4 cross-linking of Tim-1 enhances select signaling pathways downstream of FceRI in mast cells, including mTOR-dependent signaling, leading to increased cytokine production but without affecting degranulation

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice

    No full text
    TIM-4, a member of the TIM family expressed on antigen-presenting cells, binds to phosphatidylserine exposed on the surface of apoptotic bodies. However, the significance of this interaction in vivo remains unknown because other receptors have been implicated in the clearance of apoptotic bodies and could compensate for the TIM-4 deficiency in vivo. In this study, we describe the generation of TIM-4-deficient mice and address whether TIM-4 serves a unique function in vivo. We show that TIM-4−/− peritoneal macrophages and B-1 cells do not efficiently engulf apoptotic bodies in vitro, or clear apoptotic bodies in vivo. TIM-4-deficient mice have hyperactive T and B cells, elevated levels of serum Ig, and develop antibodies to double-stranded DNA. Taken together, we show that TIM-4 is critical for the clearance of apoptotic bodies in vivo, and that lack of TIM-4 results in aberrant persistence of apoptotic bodies leading to dysregulated lymphocyte activation and signs of systemic autoimmunity
    corecore