1,346 research outputs found

    Opening the Treasure Chest in Carina

    Full text link
    We have mapped the G287.84-0.82 cometary globule (with the Treasure Chest cluster embedded in it) in the South Pillars region of Carina (i) in [CII], 63micron [OI], and CO(11-10) using upGREAT on SOFIA and (ii) in J=2-1 transitions of CO, 13CO, C18O and J=3-2 transitions of H2CO using the APEX telescope in Chile. We probe the morphology, kinematics, and physical conditions of the molecular gas and the photon dominated regions (PDRs) in G287.84-0.82. The [CII] and [OI] emission suggest that the overall structure of the pillar (with red-shifted photo evaporating tails) is consistent with the effect of FUV radiation and winds from eta-Car and O stars in Trumpler 16. The gas in the head of the pillar is strongly influenced by the embedded cluster, whose brightest member is an O9.5V star, CPD-59 2661. The emission of the [CII] and [OI] lines peak at a position close to the embedded star, while all other tracers peak at another position lying to the north-east consistent with gas being compressed by the expanding PDR created by the embedded cluster. The molecular gas inside the globule is probed with the J=2-1 transitions of CO and isotopologues as well as H2CO, and analyzed using a non-LTE model (escape-probability approach), while we use PDR models to derive the physical conditions of the PDR. We identify at least two PDR gas components; the diffuse part (~10^4 cm^-3) is traced by [CII], while the dense (n~ 2-8x10^5 cm^-3) part is traced by [CII], [OI], CO(11-10). Using the F=2-1 transition of [13CII] detected at 50 positions in the region, we derive optical depths (0.9-5), excitation temperatures of [CII] (80-255 K), and N(C+) of 0.3-1x10^19 cm^-2. The total mass of the globule is ~1000 Msun, about half of which is traced by [CII]. The dense PDR gas has a thermal pressure of 10^7-10^8 K cm^-3, which is similar to the values observed in other regions.Comment: Accepted for publication in Astronomy and Astrophysics (abstract slightly abridged

    High Spectral and Spatial Resolution Observations of the PDR Emission in the NGC2023 Reflection Nebula with SOFIA and APEX

    Full text link
    We have mapped the NGC 2023 reflection nebula in [CII] and CO(11--10) with the heterodyne receiver GREAT on SOFIA and obtained slightly smaller maps in 13CO(3--2), CO(3--2), CO(4--3), CO(6--5), and CO(7--6) with APEX in Chile. We use these data to probe the morphology, kinematics, and physical conditions of the C II region, which is ionized by FUV radiation from the B2 star HD37903. The [CII] emission traces an ellipsoidal shell-like region at a position angle of ~ -50 deg, and is surrounded by a hot molecular shell. In the southeast, where the C II region expands into a dense, clumpy molecular cloud ridge, we see narrow and strong line emission from high-J CO lines, which comes from a thin, hot molecular shell surrounding the [CII] emission. The [CII] lines are broader and show photo evaporating gas flowing into the C II region. Based on the strength of the [13CII] F=2--1 line, the [CII] line appears to be somewhat optically thick over most of the nebula with an optical depth of a few. We model the physical conditions of the surrounding molecular cloud and the PDR emission using both RADEX and simple PDR models. The temperature of the CO emitting PDR shell is ~ 90 -- 120 K, with densities of 10^5 -- 10^6 cm^-3, as deduced from RADEX modeling. Our PDR modeling indicates that the PDR layer where [CII] emission dominates has somewhat lower densities, 10^4 to a few times 10^5 cm^-3Comment: Accepted by A&

    Embryo rescue from seedless grapevines (Vitis vinifera L.) treated with growth retardants

    Get PDF
    The effects of two retardants (CCC and paclobutrazol) and the new compound XE 1019, applied before grapevine anthesis, were studied in order to increase the number of fertilised embryos and growing plantlets derived from in ovulo culture of seedless cultivars CG 102.011, Emperatriz and Malvinas. No significant differences were detected between treatments with CCC (400 and 800 mg . l-1, applied 2, 3 and 4 weeks before bloom), and the control in the cv. CG 102.011. The number of growing plantlets at 10 weeks after anthesis and at maturity was significantly higher than that from 8 weeks. In applications closer to bloom, CCC treatments increased the number of ovules per berry in the cultivars assayed. From all cultivars, only CG 102.011 showed a significant increase in plantlet production after CCC treatment when clusters were harvested the 10th week after bloom. It is believed that CCC would act through inhibition of endogenous gibberellin synthesis as the cause of ovule abortion. The idea is based on the fact that gibberellic acid can induce seedlessness in some seeded cultivars

    Abundant Z-cyanomethanimine in the interstellar medium: paving the way to the synthesis of adenine

    Full text link
    We report the first detection in the interstellar medium of the Z-isomer of cyanomethanimine (HNCHCN), an HCN dimer proposed as precursor of adenine. We identified six transitions of Z-cyanomethanimine, along with five transitions of E-cyanomethanimine, using IRAM 30m observations towards the Galactic Center quiescent molecular cloud G+0.693. The Z-isomer has a column density of (2.0±\pm0.6)×\times1014^{14} cm−2^{-2} and an abundance of 1.5×\times10−9^{-9}. The relative abundance ratio between the isomers is [Z/E]∼\sim6. This value cannot be explained by the two chemical formation routes previously proposed (gas-phase and grain surface), which predicts abundances ratios between 0.9 and 1.5. The observed [Z/E] ratio is in good agreement with thermodynamic equilibrium at the gas kinetic temperature (130−-210 K). Since isomerization is not possible in the ISM, the two species may be formed at high temperature. New chemical models, including surface chemistry on dust grains and gas-phase reactions, should be explored to explain our findings. Whatever the formation mechanism, the high abundance of Z-HNCHCN shows that precursors of adenine are efficiently formed in the ISM.Comment: Accepted in Monthly Notices of the Royal Astronomical Society Letter

    Complex organic molecules in the Galactic Centre: the N-bearing family

    Full text link
    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 \, telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2_2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.Comment: 24 pages, 23 figures, 7 tables, accepted for publication in MNRA

    Chemical Features in the Circumnuclear Disk of the Galactic Center

    Get PDF
    The circumnuclear disk (CND) of the Galactic Center is exposed to many energetic phenomena coming from the supermassive black hole Sgr A* and stellar activities. These energetic activities can affect the chemical composition in the CND by the interaction with UV-photons, cosmic-rays, X-rays, and shock waves. We aim to constrain the physical conditions present in the CND by chemical modeling of observed molecular species detected towards it. We analyzed a selected set of molecular line data taken toward a position in the southwest lobe of the CND with the IRAM 30m and APEX 12-meter telescopes and derived the column density of each molecule using a large velocity gradient (LVG) analysis. The determined chemical composition is compared with a time-dependent gas-grain chemical model based on the UCL\_CHEM code that includes the effects of shock waves with varying physical parameters. Molecules such as CO, HCN, HCO+^+, HNC, CS, SO, SiO, NO, CN, H2_2CO, HC3_3N, N2_2H+^+ and H3_3O+^+ are detected and their column densities are obtained. Total hydrogen densities obtained from LVG analysis range between 2×1042 \times 10^4 and 1×106 1 \times 10^6\,cm−3^{-3} and most species indicate values around several ×105 \times 10^5\,cm−3^{-3}, which are lower than values corresponding to the Roche limit, which shows that the CND is tidally unstable. The chemical models show good agreement with the observations in cases where the density is ∼104 \sim10^4\,cm−3^{-3}, the cosmic-ray ionization rate is high, >10−15 >10^{-15} \,s−1^{-1}, or shocks with velocities >40 > 40\,km s−1^{-1} have occurred. Comparison of models and observations favors a scenario where the cosmic-ray ionization rate in the CND is high, but precise effects of other factors such as shocks, density structures, UV-photons and X-rays from the Sgr A* must be examined with higher spatial resolution data.Comment: 17 Pages, 13 figures, accepted for publication in A&

    Teorías intrínsecas de la consciencia

    Get PDF
    The aim of this paper is to offer a clarification of the concept of conscious mental state within the framework of the intrinsic theories of consciousness. In the first place, we will examine Franz Brentano’s (1874) proposal according to which a state of consciousness is one that is directed towards an object and incidentally also directed towards itself as a secondary object. Secondly, we will explain Uriah Kriegel’s (2018) proposal, according to which a conscious state is an internally differentiated state that has the characteristic that one of its parts is directed towards the same state, making it self-representative. We will conclude that both proposals interpret a conscious state as a complex state of parts.El objetivo de este trabajo es ofrecer una aclaración del concepto de estado mental consciente dentro del marco de las teorías intrínsecas de la consciencia. En primer lugar, examinaremos la propuesta de Franz Brentano (1874) según la cual un estado de consciencia es aquel que se dirige hacia un objeto e incidentalmente también se dirige hacia sí mismo como objeto secundario. En segundo lugar, explicaremos la propuesta de Uriah Kriegel (2018), según la cual un estado consciente es un estado internamente diferenciado que posee la característica de que una de sus partes se dirige hacia el mismo estado, por lo que es autorrepresentativa. Concluiremos que ambas propuestas interpretan un estado consciente como un estado complejo de partes

    Considerations Relevant to the Stability of Granite Boulders

    Get PDF
    Granite boulders are characteristic geomorphological structures formed in granitic terrains. Due to their formation process associated with typical spheroidal weathering phenomena, they tend to show more or less ellipsoidal shapes prone to instability, and they often lie on small contact surfaces. Analyzing the stability of these boulders is not a straightforward task. First, these boulders may topple or slide. Additionally, their typically irregular geometry and uneven contact with the surface where they lie makes the analysis more complex. The authors have identified some critical issues that are relevant to characterize these boulders from a rock mechanics point of view, with the aim of estimating the stability of boulders. In particular, an accurate description of the geometry of the boulder is necessary to perform accurate toppling calculations. Additionally, the contact area and the features of the contact plane need to be known in detail. The study is intended to serve as a guideline to address the stability of these granite boulders in a rigorous way, since standard rock mechanics approaches (planar failure, toppling stability, standard rock joint strength criteria, etc.) may not be directly applicable to these particular cases.The first author acknowledges the Spanish Ministry of Science, Innovation and Universities for financial support of a related project awarded under Contract Reference No. RTI2018-093563-B-I00, partially financed by means of ERDF funds from the EU. The first author also gratefully thanks the Commission for Cultural, Educational, Scientific Exchange between the USA and Spain of the Fulbright Program for financing a Scholar Visit to Colorado School of Mines, where part of this study was completed. The fourth author acknowledges funding of part of his research in association boulder geometry acquisition from EU FEDER under Project TEC2017-85244-C2-1-P and by the University of Alicante (vigrob-157 and GRE18-05)
    • …
    corecore