1,829 research outputs found
Recommended from our members
Search for the disappearance of muon antineutrinos in the NuMI neutrino beam
We report constraints on antineutrino oscillation parameters that were obtained by using the two MINOS detectors to measure the 7% muon antineutrino component of the NuMI neutrino beam. In the Far Detector, we select 130 events in the charged-current muon antineutrino sample, compared to a prediction of 136.4 ± 11.7(stat)^(+10.2)_(-8.9)(syst) events under the assumption │Δm^2│ = 2.32 X 10^(-3) eV^2, sin^2(2θ) = 1.0
Recommended from our members
Improved Search for Muon-Neutrino to Electron-Neutrino Oscillations in MINOS
We report the results of a search for ν_e appearance in a ν_μ beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2×10^(20) protons on the NuMI target at Fermilab, we find 2sin^2(θ_(23))sin^2(2θ_(13))<0.12(0.20) at 90% confidence
level for δ=0 and the normal (inverted) neutrino mass hierarchy, with a best-fit of 2sin^2(θ_(23))sin^2(2θ_(13))=0.041^(+0.047)_(-0.031)(0.079^(+0.071)_(-0.053).
The θ_(13)= 0 hypothesis is disfavored by the MINOS data
at the 89% confidence level
Recommended from our members
First Direct Observation of Muon Antineutrino Disappearance
This Letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̅ _μ production, accumulating an exposure of 1.71×10^(20) protons on target. In the Far Detector, 97 charged current ν̅ _μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̅ 2|= [3.36=_(-0.40)^(+0.46)(stat)±0.06(syst)]x10^(-3)eV^2,sin^2(2θ̅)=0.86 _(-0.12)^(+0.11)(stat)±0.01(syst). The MINOS ν̅ _μ and ν̅ _μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters
Recommended from our members
New constraints on muon-neutrino to electron-neutrino transitions in MINOS
This paper reports results from a search for ν_μ → ν_e transitions by the MINOS experiment based on a 7×10^(20) protons-on-target exposure. Our observation of 54 candidate ν_e events in the far detector with a background of 49.1±7.0(stat)±2.7(syst) events predicted by the measurements in the near detector requires 2sin^2(2θ_(13))sin^2θ_(23)<0.12(0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at δ_(CP)=0. The experiment sets the tightest limits to date on the value of θ_(13) for nearly all values of δ_(CP) for the normal neutrino mass hierarchy and maximal sin^2(2θ_(23))
Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector
The energy dependence of the neutrino-iron and antineutrino-iron inclusive
charged-current cross sections and their ratio have been measured using a
high-statistics sample with the MINOS Near Detector exposed to the NuMI beam
from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were
determined using a low hadronic energy subsample of charged-current events. We
report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy
range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which
is measured with precision 2-8%. The data set spans the region from low energy,
where accurate measurements are sparse, up to the high-energy scaling region
where the cross section is well understood.Comment: accepted by PR
Recommended from our members
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×10^(20) protons on target in which neutrinos of energies between ∼500 MeV and 120 GeV are produced predominantly as ν_μ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ν_μ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles θ_(24) and θ_(34) are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime τ_3/m_3>2.1×10^(-12) s/eV at 90% C.L
A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam
We report the results of a search for muon-neutrino disappearance by the Main
Injector Neutrino Oscillation Search. The experiment uses two detectors
separated by 734 km to observe a beam of neutrinos created by the Neutrinos at
the Main Injector facility at Fermi National Accelerator Laboratory. The data
were collected in the first 282 days of beam operations and correspond to an
exposure of 1.27e20 protons on target. Based on measurements in the Near
Detector, in the absence of neutrino oscillations we expected 336 +/- 14
muon-neutrino charged-current interactions at the Far Detector but observed
215. This deficit of events corresponds to a significance of 5.2 standard
deviations. The deficit is energy dependent and is consistent with two-flavor
neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3
eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level.Comment: In submission to Phys. Rev.
Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS
The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray
muon data since the beginning of August, 2003 at a depth of 2070
meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA.
The data with both forward and reversed magnetic field running configurations
were combined to minimize systematic errors in the determination of the
underground muon charge ratio. When averaged, two independent analyses find the
charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.).
Using the map of the Soudan rock overburden, the muon momenta as measured
underground were projected to the corresponding values at the surface in the
energy range 1-7 TeV. Within this range of energies at the surface, the MINOS
data are consistent with the charge ratio being energy independent at the two
standard deviation level. When the MINOS results are compared with measurements
at lower energies, a clear rise in the charge ratio in the energy range 0.3 --
1.0 TeV is apparent. A qualitative model shows that the rise is consistent with
an increasing contribution of kaon decays to the muon charge ratio.Comment: 16 pages, 17 figure
Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam
The velocity of a ~3 GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.12.910-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mnu<50 MeV/c2 (99% C.L.)
- …