595 research outputs found
Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites
We have conducted N-body simulations of the growth of Milky Way-sized halos
in cold and warm dark matter cosmologies. The number of dark matter satellites
in our simulated Milky Ways decreases with decreasing mass of the dark matter
particle. Assuming that the number of dark matter satellites exceeds or equals
the number of observed satellites of the Milky Way we derive lower limits on
the dark matter particle mass. We find with 95% confidence m_s > 13.3 keV for a
sterile neutrino produced by the Dodelson and Widrow mechanism, m_s > 8.9 keV
for the Shi and Fuller mechanism, m_s > 3.0 keV for the Higgs decay mechanism,
and m_{WDM} > 2.3 keV for a thermal dark matter particle. The recent discovery
of many new dark matter dominated satellites of the Milky Way in the Sloan
Digital Sky Survey allows us to set lower limits comparable to constraints from
the complementary methods of Lyman-alpha forest modeling and X-ray observations
of the unresolved cosmic X-ray background and of dark matter halos from dwarf
galaxy to cluster scales. Future surveys like LSST, DES, PanSTARRS, and
SkyMapper have the potential to discover many more satellites and further
improve constraints on the dark matter particle mass.Comment: 17 pages, 13 figures, replaced with final version published in
Physical Review
Cosmic Microwave Background Polarization and reionization: constraining models with a double reionization
Neutral hydrogen around high-z QSO and an optical depth tau ~ 0.17 can be
reconciled if reionization is more complex than a single transition at z ~ 6-8.
Tracing its details could shed a new light on the first sources of radiation.
Here we discuss how far such details can be inspected through planned
experiments on CMB large-scale anisotropy and polarization, by simulating an
actual data analysis. By considering a set of double reionization histories of
Cen (2003) type, a relevant class of models not yet considered by previous
works, we confirm that large angle experiments rival high resolution ones in
reconstructing the reionization history. We also confirm that reionization
histories, studied with the prior of a single and sharp reionization, yield a
biased tau, showing that this bias is generic. We further find a monotonic
trend in the bias for the models that we consider, and propose an explanation
of the trend, as well as the overall bias. We also show that in long-lived
experiments such a trend can be used to discriminate between single and double
reionization patterns.Comment: 8 pages, 11 figures. Substantial rewriting, replaced with accepted
version. To be published in A&
Stealth Galaxies in the Halo of the Milky Way
We predict that there is a population of low-luminosity dwarf galaxies
orbiting within the halo of the Milky Way that have surface brightnesses low
enough to have escaped detection in star-count surveys. The overall count of
stealth galaxies is sensitive to the presence (or lack) of a low-mass threshold
in galaxy formation. These systems have luminosities and stellar velocity
dispersions that are similar to those of known ultrafaint dwarf galaxies but
they have more extended stellar distributions (half light radii greater than
about 100 pc) because they inhabit dark subhalos that are slightly less massive
than their higher surface brightness counterparts. As a result, the typical
peak surface brightness is fainter than 30 mag per square arcsec. One
implication is that the inferred common mass scale for Milky Way dwarfs may be
an artifact of selection bias. If there is no sharp threshold in galaxy
formation at low halo mass, then ultrafaint galaxies like Segue 1 represent the
high-mass, early forming tail of a much larger population of objects that could
number in the hundreds and have typical peak circular velocities of about 8
km/s and masses within 300 pc of about 5 million solar masses. Alternatively,
if we impose a low-mass threshold in galaxy formation in order to explain the
unexpectedly high densities of the ultrafaint dwarfs, then we expect only a
handful of stealth galaxies in the halo of the Milky Way. A complete census of
these objects will require deeper sky surveys, 30m-class follow-up telescopes,
and more refined methods to identify extended, self-bound groupings of stars in
the halo.Comment: 12 pages, 7 figures, accepted by ApJ. Several crucial references
added and the discussion has been expanded. Conclusions are unchanged
Is Double Reionization Physically Plausible?
Recent observations of z~6 quasars and the cosmic microwave background imply
a complex history to cosmic reionization. Such a history requires some form of
feedback to extend reionization over a long time interval, but the nature of
the feedback and how rapidly it operates remain highly uncertain. Here we focus
on one aspect of this complexity: which physical processes can cause the global
ionized fraction to evolve non-monotonically with cosmic time? We consider a
range of mechanisms and conclude that double reionization is much less likely
than a long, but still monotonic, ionization history. We first examine how
galactic winds affect the transition from metal-free to normal star formation.
Because the transition is actually spatially inhomogeneous and temporally
extended, this mechanism cannot be responsible for double reionization given
plausible parameters for the winds. We next consider photoheating, which causes
the cosmological Jeans mass to increase in ionized regions and hence suppresses
galaxy formation there. In this case, double reionization requires that small
halos form stars efficiently, that the suppression from photoheating is strong
relative to current expectations, and that ionizing photons are preferentially
produced outside of previously ionized regions. Finally, we consider H_2
photodissociation, in which the buildup of a soft ultraviolet background
suppresses star formation in small halos. This can in principle cause the
ionized fraction to temporarily decrease, but only during the earliest stages
of reionization. Finally, we briefly consider the effects of some of these
feedback mechanisms on the topology of reionization.Comment: 13 pages, 5 figures, in press at ApJ (reorganized significantly but
major conclusions unchanged
Breakfast skipping, weight, cardiometabolic risk, and nutrition quality in children and adolescents: A systematic review of randomized controlled and intervention longitudinal trials
Breakfast skipping increases with age, and an association with a high risk of being overweight (OW) and of obesity (OB), cardiometabolic risk, and unhealthy diet regimen has been demonstrated in observational studies with children and adults. Short-term intervention trials in adults reported conflicting results. The purpose of this systematic review was to summarize the association of breakfast skipping with body weight, metabolic features, and nutrition quality in the groups of young people that underwent randomized controlled (RCT) or intervention longitudinal trials lasting more than two months. We searched relevant databases (2000–2021) and identified 584 articles, of which 16 were suitable for inclusion. Overall, 50,066 children and adolescents were in-cluded. No studies analyzed cardiometabolic features. Interventions were efficacious in reducing breakfast skipping prevalence when multi-level approaches were used. Two longitudinal studies reported a high prevalence of OW/OB in breakfast skippers, whereas RCTs had negligible effects. Ten studies reported a lower-quality dietary intake in breakfast skippers. This review provides in-sight into the fact that breakfast skipping is a modifiable marker of the risk of OW/OB and unhealthy nutritional habits in children and adolescents. Further long-term multi-level intervention studies are needed to investigate the relationship between breakfast, nutrition quality, chronotypes, and cardiometabolic risk in youths
Photoevaporation of Cosmological Minihalos during Reionization
We present the first gas dynamical simulations of the photoevaporation of
cosmological minihalos overtaken by the ionization fronts which swept through
the IGM during reionization in a LCDM universe, including the effects of
radiative transfer. We demonstrate the phenomenon of I-front trapping inside
minihalos, in which the weak, R-type fronts which traveled supersonically
across the IGM decelerated when they encountered the dense, neutral gas inside
minihalos, becoming D-type I-fronts, preceded by shock waves. For a minihalo
with virial temperature T_vir < 10^4 K, the I-front gradually burned its way
through the minihalo which trapped it, removing all of its baryonic gas by
causing a supersonic, evaporative wind to blow backwards into the IGM, away
from the exposed layers of minihalo gas just behind the advancing I-front. Such
hitherto neglected feedback effects were widespread during reionization. N-body
simulations and analytical estimates of halo formation suggest that sub-kpc
minihalos such as these, with T_vir < 10^4 K, were so common as to cover the
sky around larger-mass source halos and possibly dominate the absorption of
ionizing photons. This means that previous estimates of the number of ionizing
photons per H atom required to complete reionization which neglected this
effect may be too low. Regardless of their effect on the progress of
reionization, however, the minihalos were so abundant that random lines of
sight thru the high-z universe should encounter many of them, which suggests
that it may be possible to observe the processes described here in the
absorption spectra of distant sources.Comment: 34 pages, 34 figures, submitted to MNRAS. Computer animations at
http://galileo.as.utexas.ed
Energy Dissipation in Interstellar Cloud Collisions
We present a study of the kinetic energy dissipation in interstellar cloud
collisions. The main aim is to understand the dependence of the elasticity
(defined as the ratio of the final to the initial kinetic energy of the clouds)
on the velocity and mass ratio of the colliding clouds, magnetic field
strength, and gas metallicity for head-on collisions. The problem has been
studied both analytically and via numerical simulations. We have derived handy
analytical relationships that well approximate the analogous numerical results.
The main findings of this work are: (i) the kinetic energy dissipation in cloud
collisions is minimum (i.e. the collision elasticity is maximum) for a cloud
relative velocity ; (ii) the above minimum value is
proportional , where is the metallicity and is the cloud
size: the larger is the more dissipative (i.e. inelastic) the
collision will be; (iii) in general, we find that the energy dissipation
decreases when the magnetic field strength, and mass ratio of the clouds are
increased and the metallicity is decreased, respectively. We briefly discuss
the relevance of this study to the global structure of the interstellar medium
and to galaxy formation and evolution.Comment: 16 pages, aasms LaTeX, 7 figures. ApJ, accepte
Pediatric obesity and vitamin D deficiency: a proteomic approach identifies multimeric adiponectin as a key link between these conditions.
Key circulating molecules that link vitamin D (VD) to pediatric obesity and its co-morbidities remain unclear. Using a proteomic approach, our objective was to identify key molecules in obese children dichotomized according to 25OH-vitamin D (25OHD) levels. A total of 42 obese children (M/F = 18/24) were divided according to their 25OHD3 levels into 25OHD3 deficient (VDD; n = 18; 25OHD<15 ng/ml) or normal subjects (NVD; n = 24; >30 ng/ml). Plasma proteomic analyses by two dimensional (2D)-electrophoresis were performed at baseline in all subjects. VDD subjects underwent a 12mo treatment with 3000 IU vitamin D3 once a week to confirm the proteomic analyses. The proteomic analyses identified 53 "spots" that differed between VDD and NVD (p<0.05), amongst which adiponectin was identified. Adiponectin was selected for confirmational studies due to its tight association with obesity and diabetes mellitus. Western Immunoblot (WIB) analyses of 2D-gels demonstrated a downregulation of adiponectin in VDD subjects, which was confirmed in the plasma from VDD with respect to NVD subjects (p<0.035) and increased following 12mo vitamin D3 supplementation in VDD subjects (p<0.02). High molecular weight (HMW) adiponectin, a surrogate indicator of insulin sensitivity, was significantly lower in VDD subjects (p<0.02) and improved with vitamin D3 supplementation (p<0.042). A direct effect in vitro of 1α,25-(OH)2D3 on adipocyte adiponectin synthesis was demonstrated, with adiponectin and its multimeric forms upregulated, even at low pharmacological doses (10(-9) M) of 1α,25-(OH)2D3. This upregulation was paralleled by the adiponectin interactive protein, DsbA-L, suggesting that the VD regulation of adiponectin involves post-transciptional events. Using a proteomic approach, multimeric adiponectin has been identified as a key plasma protein that links VDD to pediatric obesity
A gated oscillator clock and data recovery circuit for nanowatt wake-up and data receivers
This article presents a data-startable baseband logic featuring a gated oscillator clock and data recovery (GO-CDR) circuit for nanowatt wake-up and data receivers (WuRxs). At each data transition, the phase misalignment between the data coming from the analog front-end (AFE) and the clock is cleared by the GO-CDR circuit, thus allowing the reception of long data streams. Any free-running frequency mismatch between the GO and the bitrate does not limit the number of receivable bits, but only the maximum number of equal consecutive bits (Nm). To overcome this limitation, the proposed system includes a frequency calibration circuit, which reduces the frequency mismatch to ±0.5%, thus enabling the WuRx to be used with different encoding techniques up to Nm = 100. A full WuRx prototype, including an always-on clockless AFE operating in subthreshold, was fabricated with STMicroelectronics 90 nm BCD technology. The WuRx is supplied with 0.6 V, and the power consumption, excluding the calibration circuit, is 12.8 nW during the rest state and 17 nW at a 1 kbps data rate. With a 1 kbps On-Off Keying (OOK) modulated input and −35 dBm of input RF power after the input matching network (IMN), a 10^(−3) missed detection rate with a 0 bit error tolerance is measured, transmitting 63 bit packets with the Nm ranging from 1 to 63. The total sensitivity, including the estimated IMN gain at 100 MHz and 433 MHz, is −59.8 dBm and −52.3 dBm, respectively. In comparison with an ideal CDR, the degradation of the sensitivity due to the GO-CDR is 1.25 dBm. False alarm rate measurements lasting 24 h revealed zero overall false wake-ups
- …