10 research outputs found

    Co-Crystal Structures of PKG Iβ (92–227) with cGMP and cAMP Reveal the Molecular Details of Cyclic-Nucleotide Binding

    Get PDF
    Cyclic GMP-dependent protein kinases (PKGs) are central mediators of the NO-cGMP signaling pathway and phosphorylate downstream substrates that are crucial for regulating smooth muscle tone, platelet activation, nociception and memory formation. As one of the main receptors for cGMP, PKGs mediate most of the effects of cGMP elevating drugs, such as nitric oxide-releasing agents and phosphodiesterase inhibitors which are used for the treatment of angina pectoris and erectile dysfunction, respectively. configuration, with a conserved threonine residue anchoring both cyclic phosphate and guanine moieties. The structure of CNBD-A in the absence of bound cyclic nucleotide was similar to that of the cyclic nucleotide bound structures. Surprisingly, isothermal titration calorimetry experiments demonstrated that CNBD-A binds both cGMP and cAMP with a relatively high affinity, showing an approximately two-fold preference for cGMP. conformation through its interaction with Thr193 and an unusual cis-peptide forming residues Leu172 and Cys173. Although these studies provide the first structural insights into cyclic nucleotide binding to PKG, our ITC results show only a two-fold preference for cGMP, indicating that other domains are required for the previously reported cyclic nucleotide selectivity

    The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome

    No full text
    Sézary syndrome is a leukemic and aggressive form of cutaneous T-cell lymphoma (CTCL) resulting from the malignant transformation of skin-homing central memory CD4 positive T cells. Here we performed whole-exome sequencing of tumor-normal sample pairs from 25 Sézary syndrome and 17 other CTCL patients. These analyses revealed a distinctive pattern of somatic copy number alterations in Sézary syndrome including highly prevalent chromosomal deletions involving the TP53, RB1, PTEN, DNMT3A and CDKN1B tumor suppressors. Mutation analysis identified a broad spectrum of somatic mutations in key genes involved in epigenetic regulation (TET2, CREBBP, MLL2, MLL3, BRD9, SMARCA4 and CHD3) and signaling, including MAPK1, BRAF, CARD11 and PRKG1 mutations driving increased MAPK, NFκB and NFAT activity upon T-cell receptor stimulation. Collectively, our findings provide new insights into the genetics of Sézary syndrome and CTCL and support the development of personalized therapies targeting key oncogenically activated signaling pathways for the treatment of these diseases

    Endocannabinoid Oxygenation by Cyclooxygenases, Lipoxygenases, and Cytochromes P450: Cross-Talk between the Eicosanoid and Endocannabinoid Signaling Pathways

    No full text
    corecore