21,652 research outputs found
Analysis of pressure distortion testing
The development of a distortion methodology, method D, was documented, and its application to steady state and unsteady data was demonstrated. Three methodologies based upon DIDENT, a NASA-LeRC distortion methodology based upon the parallel compressor model, were investigated by applying them to a set of steady state data. The best formulation was then applied to an independent data set. The good correlation achieved with this data set showed that method E, one of the above methodologies, is a viable concept. Unsteady data were analyzed by using the method E methodology. This analysis pointed out that the method E sensitivities are functions of pressure defect level as well as corrected speed and pattern
Improving supply and phosphorous use efficiency in organic farming systems
Phosphorus (P) is an essential plant nutrient that needs to be managed carefully in organic systems so that crop yield and quality remain sustainable without contributing to environmental damage, particularly that associated with eutrophication. Under organic regulations, minimally processed rock phosphate (PR) can be used to amend low P fertility soils, although the solubility is extremely low at optimum soil pH for most crop growth (pH 6.5). This paper describes a project (PLINK) which aims to develop methods of improving P efficiency on organic farms, although the same approaches may also be applicable on conventional and low-input farms. The methodologies that the project is developing include the fermentation and composting of crop waste material with PR in order to solubilise P and make it more available to the crop. Some initial results are described here. In addition, the project will investigate the alteration of the rotation to include crops or varieties with high P uptake efficiency, or roots that possess acidifying properties which improve P availability for following crops
Three degree-of-freedom force feedback control for robotic mating of umbilical lines
The use of robotic manipulators for the mating and demating of umbilical fuel lines to the Space Shuttle Vehicle prior to launch is investigated. Force feedback control is necessary to minimize the contact forces which develop during mating. The objective is to develop and demonstrate a working robotic force control system. Initial experimental force control tests with an ASEA IRB-90 industrial robot using the system's Adaptive Control capabilities indicated that control stability would by a primary problem. An investigation of the ASEA system showed a 0.280 second software delay between force input commands and the output of command voltages to the servo system. This computational delay was identified as the primary cause of the instability. Tests on a second path into the ASEA's control computer using the MicroVax II supervisory computer show that time delay would be comparable, offering no stability improvement. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servosystem directly, allowing the robot to use force feedback control while in rigid contact with a moving three-degree-of-freedom target. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servo system directly. This method allowed the robot to use force feedback control while in rigid contact with moving three degree-of-freedom target. Tests on this approach indicated adequate force feedback control even under worst case conditions. A strategy to digitally-controlled vision system was developed. This requires switching between the digital controller when using vision control and the analog controller when using force control, depending on whether or not the mating plates are in contact
The cutaneous 'rabbit' illusion affects human primary sensory cortex somatopically
We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion), illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept
Repeated exercise stress impairs volitional but not magnetically evoked electromechanical delay of the knee flexors
The effects of serial episodes of fatigue and recovery on volitional and magnetically evoked neuromuscular performance of the knee flexors were assessed in twenty female soccer players during: (i) an intervention comprising 4x35s maximal static exercise; (ii) a control condition. Volitional peak force (PFV) was impaired progressively (-16 % vs. baseline: 235.3±54.7 to 198.1±38.5 N) by the fatiguing exercise and recovered to within -97 % of baseline values following six-minutes of rest. Evoked peak twitch force (PTFE) was diminished subsequent to the fourth episode of exercise (23.3 %: 21.4±13.8 vs. 16.4±14.6 N) and remained impaired at this level throughout the recovery. Impairment of volitional electromechanical delay performance (EMDV) following the first episode of exercise (25.5 % :55.3±11.9 vs. 69.5±24.5 ms) contrasted with concurrent improvement (10.0 %: 24.5±4.7 vs. 22.1±5.0 ms) in evoked electromechanical delay (EMDE) (p <0.05) and this increased disparity between EMDE and EMDV remained during subsequent periods of intervention and recovery. The fatiguing exercise provoked substantial impairments to volitional strength and EMDV that showed differential patterns of recovery. However, improved EMDE performance might identify a dormant capability for optimal muscle responses during acute stressful exercise and an improved capacity to maintain dynamic joint stabilty during critical episodes of loading
Changing, priming, and acting on values: Effects via motivational relations in a circular model
Circular models of values and goals suggest that some motivational aims are consistent with each other, some oppose each other, and others are orthogonal to each other. The present experiments tested this idea explicitly by examining how value confrontation and priming methods influence values and value-consistent behaviors throughout the entire value system. Experiment 1 revealed that change in 1 set of social values causes motivationally compatible values to increase in importance, whereas motivationally incompatible values decrease in importance and orthogonal values remain the same. Experiment 2 found that priming security values reduced the better-than-average effect, but priming stimulation values increased it. Similarly, Experiments 3 and 4 found that priming security values increased cleanliness and decreased curiosity behaviors, whereas priming self-direction values decreased cleanliness and increased curiosity behaviors. Experiment 5 found that priming achievement values increased success at puzzle completion and decreased helpfulness to an experimenter, whereas priming with benevolence values decreased success and increased helpfulness. These results highlight the importance of circular models describing motivational interconnections between values and personal goals
Formation and Disruption of Cosmological Low Mass Objects
We investigate the evolution of cosmological low mass (low virial
temperature) objects and the formation of the first luminous objects. First,
the `cooling diagram' for low mass objects is shown. We assess the cooling rate
taking into account the contribution of H_2, which is not in chemical
equilibrium generally, with a simple argument of time scales. The reaction
rates and the cooling rate of H_2 are taken from the recent results by Galli &
Palla (1998). Using this cooling diagram, we also estimate the formation
condition of luminous objects taking into account the supernova (SN) disruption
of virialized clouds. We find that the mass of the first luminous object is
several times 10^7 solar mass, because smaller objects may be disrupted by the
SNe before they become luminous. Metal pollution of low mass (Ly-alpha) clouds
also discussed. The resultant metallicity of the clouds is about 1/1000 of the
solar metallicity.Comment: 11 pages, 2 figures, To appear in ApJ
Radiation Front Sweeping the Ambient Medium of Gamma-Ray Bursts
Gamma-ray bursts (GRBs) are emitted by relativistic ejecta from powerful
cosmic explosions. Their light curves suggest that the gamma-ray emission
occurs at early stages of the ejecta expansion, well before it decelerates in
the ambient medium. If so, the launched gamma-ray front must overtake the
ejecta and sweep the ambient medium outward. As a result a gap is opened
between the ejecta and the medium that surfs the radiation front ahead.
Effectively, the ejecta moves in a cavity until it reaches a radius
R_{gap}=10^{16}E_{54}^{1/2} cm where E is the isotropic energy of the GRB. At
R=R_{gap} the gap is closed, a blast wave forms and collects the medium swept
by radiation. Further development of the blast wave is strongly affected by the
leading radiation front: the front plays the role of a precursor where the
medium is loaded with e+- pairs and preaccelerated just ahead of the blast. It
impacts the emission from the blast at R < R_{load}=5R_{gap} (the early
afterglow). A spectacular observational effect results: GRB afterglows should
start in optical/UV and evolve fast (< min) to a normal X-ray afterglow. The
early optical emission observed in GRB 990123 may be explained in this way. The
impact of the front is especially strong if the ambient medium is a wind from a
massive progenitor of the GRB. In this case three phenomena are predicted: (1)
The ejecta decelerates at R<R_{load} producing a lot of soft radiation. (2) The
light curve of soft emission peaks at
t_{peak}=40(1+z)E_{54}^{1/2}(Gamma_{ej}/100)^{-2} s where Gamma_{ej} is the
Lorentz factor of the ejecta. Given measured redshift z and t_{peak}, one finds
Gamma_{ej}. (3) The GRB acquires a spectral break at 5 - 50 MeV because harder
photons are absorbed by radiation scattered in the wind.Comment: 20 pages, accepted to Ap
- …
