361 research outputs found

    Dna2 in chromosome stability and cell survival—is it all about replication forks?

    Get PDF
    The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis

    Get PDF
    AbstractDisruption of functional connectivity may be a key feature of bipolar disorder (BD) which reflects disturbances of synchronization and oscillations within brain networks. We investigated whether the resting electroencephalogram (EEG) in patients with BD showed altered synchronization or network properties. Resting-state EEG was recorded in 57 BD type-I patients and 87 healthy control subjects. Functional connectivity between pairs of EEG channels was measured using synchronization likelihood (SL) for 5 frequency bands (δ, θ, α, β, and γ). Graph-theoretic analysis was applied to SL over the electrode array to assess network properties. BD patients showed a decrease of mean synchronization in the alpha band, and the decreases were greatest in fronto-central and centro-parietal connections. In addition, the clustering coefficient and global efficiency were decreased in BD patients, whereas the characteristic path length increased. We also found that the normalized characteristic path length and small-worldness were significantly correlated with depression scores in BD patients. These results suggest that BD patients show impaired neural synchronization at rest and a disruption of resting-state functional connectivity

    Protocolized Brain Oxygen Optimization in Subarachnoid Hemorrhage.

    Get PDF
    Brain tissue hypoxia (P <sub>bt</sub> O <sub>2</sub> < 20 mmHg) is common after subarachnoid hemorrhage (SAH) and associated with poor outcome. Recent data suggest that brain oxygen optimization is feasible and reduces the time spent with P <sub>bt</sub> O <sub>2</sub> < 20 mmHg from 45 to 16% in patients with severe traumatic brain injury. Here, we intended to quantify the brain tissue hypoxia burden despite implementation of a protocolized treatment approach in poor-grade SAH patients and to identify the simultaneous occurrence of pathologic values potentially amenable to treatment. We present a bi-centric observational cohort study including 100 poor-grade SAH patients admitted to two tertiary care centers who underwent multimodal brain monitoring and were managed with a P <sub>bt</sub> O <sub>2</sub> -targeted protocolized approach. P <sub>bt</sub> O <sub>2</sub> optimization (≥ 20 mmHg) included a stepwise neuro-intensive care approach, aiming to prevent low cerebral perfusion pressure (CPP), and blood hemoglobin, and to keep normocapnia, normoxemia, and normothermia. Based on routine blood gas analysis, hemoglobin, PaCO <sub>2,</sub> and PaO <sub>2</sub> data were matched to 2-h averaged data of continuous CPP, P <sub>bt</sub> O <sub>2</sub> , core temperature, and to hourly cerebral microdialysis (CMD) samples over the first 11 days. Patients had a Glasgow Coma Scale of 3 (IQR 3-4) and were 58 years old (IQR 48-66). Overall incidence of brain tissue hypoxia was 25%, which was not different between both sites despite differences in the treatment approach. During brain tissue hypoxia, episodes of CPP < 70 mmHg (27%), PaCO <sub>2</sub> < 35 mmHg (19%), PaO <sub>2</sub> < 80 mmHg (14%), Hb < 9 g/dL (11%), metabolic crisis (CMD-lactate/pyruvate ratio > 40, and CMD-glucose < 0.7 mmol/L; 7%), and temperature > 38.3 °C (4%) were common. Our results demonstrate that brain tissue hypoxia remains common despite implementation of a P <sub>bt</sub> O <sub>2</sub> -targeted therapy in poor-grade SAH patients, suggesting room for further optimization

    Phencyclidine Disrupts the Auditory Steady State Response in Rats

    Get PDF
    The Auditory Steady-State Response (ASSR) in the electroencephalogram (EEG) is usually reduced in schizophrenia (SZ), particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR) hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP), produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP) and Phase Locking Factor (PLF). In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg) on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg), following two weeks of subchronic, continuous administration (5 mg/kg/day), and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz) ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule

    Label-free electrochemical monitoring of DNA ligase activity

    Get PDF
    This study presents a simple, label-free electrochemical technique for the monitoring of DNA ligase activity. DNA ligases are enzymes that catalyze joining of breaks in the backbone of DNA and are of significant scientific interest due to their essential nature in DNA metabolism and their importance to a range of molecular biological methodologies. The electrochemical behavior of DNA at mercury and some amalgam electrodes is strongly influenced by its backbone structure, allowing a perfect discrimination between DNA molecules containing or lacking free ends. This variation in electrochemical behavior has been utilized previously for a sensitive detection of DNA damage involving the sugar-phosphate backbone breakage. Here we show that the same principle can be utilized for monitoring of a reverse process, i.e., the repair of strand breaks by action of the DNA ligases. We demonstrate applications of the electrochemical technique for a distinction between ligatable and unligatable breaks in plasmid DNA using T4 DNA ligase, as well as for studies of the DNA backbone-joining activity in recombinant fragments of E. coli DNA ligase

    Acute Phencyclidine Alters Neural Oscillations Evoked by Tones in the Auditory Cortex of Rats

    Get PDF
    BACKGROUND/AIMS: The onset response to a single tone as measured by electroencephalography (EEG) is diminished in power and synchrony in schizophrenia. Because neural synchrony, particularly at gamma frequencies (30-80 Hz), is hypothesized to be supported by the N-methyl-D-aspartate receptor (NMDAr) system, we tested whether phencyclidine (PCP), an NMDAr antagonist, produced similar deficits to tone stimuli in rats. METHODS: Experiment 1 tested the effect of a PCP dose (1.0, 2.5, and 4.5 mg/kg) on response to single tones on intracranial EEG recorded over the auditory cortex in rats. Experiment 2 evaluated the effect of PCP after acute administration of saline or PCP (5 mg/kg), after continuous subchronic administration of saline or PCP (5 mg/kg/day), and after a week of drug cessation. In both experiments, a time-frequency analysis quantified mean power (MP) and phase locking factor (PLF) between 1 and 80 Hz. Event-related potentials (ERPs) were also measured to tones, and EEG spectral power in the absence of auditory stimuli. RESULTS: Acute PCP increased PLF and MP between 10 and 30 Hz, while decreasing MP and PLF between approximately 50 and 70 Hz. Acute PCP produced a dose-dependent broad-band increase in EEG power that extended into gamma range frequencies. There were no consistent effects of subchronic administration on gamma range activity. Acute PCP increased ERP amplitudes for the P16 and N70 components. CONCLUSIONS: Findings suggest that acute PCP-induced NMDAr hypofunction has differential effects on neural power and synchrony which vary with dose, time course of administration and EEG frequency. EEG synchrony and power appear to be sensitive translational biomarkers for disrupted NMDAr function, which may contribute to the pathophysiology of schizophrenia and other neuropsychiatric disorders

    MGMT gene promoter methylation correlates with tolerance of temozolomide treatment in melanoma but not with clinical outcome

    Get PDF
    BACKGROUND: Despite limited clinical efficacy, treatment with dacarbazine or temozolomide (TMZ) remains the standard therapy for metastatic melanoma. In glioblastoma, promoter methylation of the counteracting DNA repair enzyme O(6)-methylguanine-DNA-methyltransferase (MGMT) correlates with survival of patients exposed to TMZ in combination with radiotherapy. For melanoma, data are limited and controversial. METHODS: Biopsy samples from 122 patients with metastatic melanoma being treated with TMZ in two multicenter studies of the Dermatologic Cooperative Oncology Group were investigated for MGMT promoter methylation. We used the COBRA (combined bisulphite restriction analysis) technique to determine aberrant methylation of CpG islands in small amounts of genomic DNA isolated from paraffin-embedded tissue sections. To detect aberrant methylation, bisulphite-treated DNA was amplified by PCR, enzyme restricted, and visualised by gel electrophoresis. RESULTS: Correlation with clinical data from 117 evaluable patients in a best-response evaluation indicated no statistically significant association between MGMT promoter methylation status and response. A methylated MGMT promoter was observed in 34.8% of responders and 23.4% of non-responders (P=0.29). In addition, no survival advantage for patients with a methylated MGMT promoter was detectable (P=0.79). Interestingly, we found a significant correlation between MGMT methylation and tolerance of therapy. Patients with a methylated MGMT promoter had more severe adverse events, requiring more TMZ dose reductions or discontinuations (P=0.007; OR 2.7 (95% CI: 1.32-5.7)). Analysis of MGMT promoter methylation comparing primaries and different metastases over the clinical course revealed no statistical difference (P=0.49). CONCLUSIONS: In advanced melanoma MGMT promoter, methylation correlates with tolerance of therapy, but not with clinical outcome

    Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability.

    Get PDF
    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come: Europe s ZT/CA area is 1.35 million hectares, while the world area is now some 125 million and growing at a rate of 7 million hectares per year. More scientific measurements of the benefits of this system are required, both to assist adoption and to trigger policy measures. In the EEC, CAP reform (greening) needs to consider making environmental services payments for these social benefits since a reduction in single farm payments is ineluctable and carbon footprint reduction is of the essence, in the face of constantly-rising fuel prices and the need to cut GHG emissions. Therefore, as the principal farm tool which offers an effective and immediate solution towards positive changes in soil quality, productivity and sustainability, ZT/CA adoption needs financial incentives, which have high economic and environmental returns to society
    corecore