597 research outputs found

    Expression and selective up-regulation of toxin-related mono ADP-ribosyltransferases by pathogen-associated molecular patterns in alveolar epithelial cells.

    Get PDF
    Mono ADP-ribosyltransferases (ARTs) are a family of enzymes related to bacterial toxins that possess adenosine diphosphate ribosyltransferase activity. We have assessed that A549 constitutively expressed ART1 on the cell surface and shown that lipotheicoic acid (LTA) and flagellin, but not lipopolysaccharide (LPS), peptidoglycan (PG) and poly (I:C), up-regulate ART1 in a time and dose dependent manner. These agonists did not alter the expression of ART3 and ART5 genes. Indeed, LTA and flagellin stimulation increased the level of ART1 protein and transcript while ART4 gene was activated after stimulation of cells with LPS, LTA, PAM and PG via TLR2 and TLR4 receptors. These results show that human ARTs possess a differential capacity to respond to bacteria cell wall components and might play a crucial role in innate immune response in airway

    Intranasal immunization with pneumococcal polysaccharide conjugate vaccines with nontoxic mutants of Escherichia coli heat-labile enterotoxins as adjuvants protects mice against invasive pneumococcal infections

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldHost defenses against Streptococcus pneumoniae depend largely on phagocytosis following opsonization by polysaccharide-specific immunoglobulin G (IgG) antibodies and complement. Since colonization of the respiratory mucosa is the first step in pneumococcal pathogenesis, mucosal immune responses may play a significant role. In addition to inducing systemic immune responses, mucosal vaccination with an effective adjuvant has the advantage of inducing mucosal IgA antibodies. The heat-labile enterotoxin (LT) of Escherichia coli is a well-studied mucosal adjuvant, and adjuvant activity of nontoxic LT mutants has been demonstrated for several protein antigens. We investigated the immunogenicity of pneumococcal polysaccharide conjugate vaccines (PNC) of serotypes 1 and 3 in mice after intranasal (i.n.) immunization by using as an adjuvant the nontoxic LT mutant LT-K63 or LT-R72, which has minimal residual toxicity. Pneumococcal serotype-specific antibodies were measured in serum (IgM, IgG, and IgA) and saliva (IgA), and vaccine-induced protection was evaluated by i.n. challenge with virulent pneumococci of the homologous serotype. When administered with LT mutants, i.n. immunization with both conjugates induced systemic and mucosal immune responses, and serum IgG antibody levels were significantly higher than after subcutaneous immunization. All mice immunized i.n. with PNC-1 and LT mutants were protected against bacteremia and cleared the pneumococci from the lung 24 h after i.n. challenge; pneumococcal density correlated significantly with serum IgG antibody levels. Similarly, the survival of mice immunized i.n. with PNC-3 and LT mutants was significantly prolonged. These results demonstrate that i.n. vaccination with PNC and potent adjuvants can protect mice against invasive and lethal pneumococcal infections, indicating that mucosal vaccination with PNC may be an alternative vaccination strategy for humans

    Strategic priorities for respiratory syncytial virus (RSV) vaccine development

    Get PDF
    AbstractAlthough RSV has been a high priority for vaccine development, efforts to develop a safe and effective vaccine have yet to lead to a licensed product. Clinical and epidemiologic features of RSV disease suggest there are at least 4 distinct target populations for vaccines, the RSV naïve young infant, the RSV naïve child ≥6 months of age, pregnant women (to provide passive protection to newborns), and the elderly. These target populations raise different safety and efficacy concerns and may require different vaccination strategies. The highest priority target population is the RSV naïve child. The occurrence of serious adverse events associated with the first vaccine candidate for young children, formalin inactivated RSV (FI-RSV), has focused vaccine development for the young RSV naïve child on live virus vaccines. Enhanced disease is not a concern for persons previously primed by a live virus infection. A variety of live-attenuated viruses have been developed with none yet achieving licensure. New live-attenuated RSV vaccines are being developed and evaluated that maybe sufficiently safe and efficacious to move to licensure. A variety of subunit vaccines are being developed and evaluated primarily for adults in whom enhanced disease is not a concern. An attenuated parainfluenza virus 3 vector expressing the RSV F protein was evaluated in RSV naïve children. Most of these candidate vaccines have used the RSV F protein in various vaccine platforms including virus-like particles, nanoparticles, formulated with adjuvants, and expressed by DNA or virus vectors. The other surface glycoprotein, the G protein, has also been used in candidate vaccines.We now have tools to make and evaluate a wide range of promising vaccines. Costly clinical trials in the target population are needed to evaluate and select candidate vaccines for advancement to efficacy trials. Better data on RSV-associated mortality in developing countries, better estimates of the risk of long term sequelae such as wheezing after infection, better measures of protection in target populations, and data on the costs and benefits of vaccines for target populations are needed to support and justify funding this process. Addressing these challenges and needs should improve the efficiency and speed of achieving a safe and effective, licensed RSV vaccine

    Shelter from the cytokine storm: pitfalls and prospects in the development of SARS-CoV-2 vaccines for an elderly population

    Get PDF
    The SARS-CoV-2 pandemic urgently calls for the development of effective preventive tools. COVID-19 hits greatly the elder and more fragile fraction of the population boosting the evergreen issue of the vaccination of older people. The development of a vaccine against SARS-CoV-2 tailored for the elderly population faces the challenge of the poor immune responsiveness of the older population due to immunosenescence, comorbidities, and pharmacological treatments. Moreover, it is likely that the inflammaging phenotype associated with age could both influence vaccination efficacy and exacerbate the risk of COVID-19-related “cytokine storm syndrome” with an overlap between the factors which impact vaccination effectiveness and those that boost virulence and worsen the prognosis of SARS-CoV-2 infection. The complex and still unclear immunopathological mechanisms of SARS-CoV-2 infection, together with the progressive age-related decline of immune responses, and the lack of clear correlates of protection, make the design of vaccination strategies for older people extremely challenging. In the ongoing effort in vaccine development, different SARS-CoV-2 vaccine candidates have been developed, tested in pre-clinical and clinical studies and are undergoing clinical testing, but only a small fraction of these are currently being tested in the older fraction of the population. Recent advances in systems biology integrating clinical, immunologic, and omics data can help to identify stable and robust markers of vaccine response and move towards a better understanding of SARS-CoV-2 vaccine responses in the elderly

    Identification of an iron-sulfur cluster that modulates the enzymatic activity in NarE, a Neisseria meningitidis ADP-ribosyltransferase.

    Get PDF
    In prokaryotes, mono-ADP-ribose transfer enzymes represent a family of exotoxins that display activity in a variety of bacterial pathogens responsible for causing disease in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report here that NarE, a putative ADP-ribosylating toxin previously identified from Neisseria meningitidis, which shares structural homologies with Escherichia coli heat labile enterotoxin and toxin from Vibrio cholerae, possesses an iron-sulfur center. The recombinant protein was expressed in E. coli, and when purified at high concentration, NarE is a distinctive golden brown in color. Evidence from UV-visible spectrophotometry and EPR spectroscopy revealed characteristics consistent of an iron-binding protein. The presence of iron was determined by colorimetric method and by an atomic absorption spectrophotometer. To identify the amino acids involved in binding iron, a combination of site-directed mutagenesis and UV-visible and enzymatic assays were performed. All four cysteine residues were individually replaced by serine. Substitution of Cys(67) and Cys(128) into serine caused a drastic reduction in the E(420)/E(280) ratio, suggesting that these two residues are essential for the formation of a stable coordination. This modification led to a consistent loss in ADP-ribosyltransferase activity, while decrease in NAD-glycohydrolase activity was less dramatic in these mutants, indicating that the correct assembly of the iron-binding site is essential for transferase but not hydrolase activity. This is the first observation suggesting that a member of the ADP-ribosyltransferase family contains an Fe-S cluster implicated in catalysis. This observation may unravel novel functions exerted by this class of enzyme

    Paraneoplastic necrotizing myopathy associated with adenocarcinoma of the lung - a rare entity with atypical onset: a case report.

    Get PDF
    Introduction. Inflammatory myopathies (such as dermatomyositis and polymyositis) are well-recognized paraneoplastic syndromes. However, paraneoplastic necrotizing myopathy is a more recently defined clinical entity, characterized by rapidly progressive, symmetrical, predominantly proximal muscle weakness with severe disability, and associated with a marked increase in serum muscle enzyme levels. Paraneoplastic necrotizing myopathy requires muscle biopsy for diagnosis, which typically shows massive necrosis of muscle fibers with limited or absent inflammatory infiltrates. Case presentation. We report the case of an 82-year-old Italian-born Caucasian man who was admitted to hospital because of heart failure and two drop attacks. Over the following days, he developed progressive severe weakness, dysphagia, and dysphonia. Testing showed increasing serum muscle enzyme levels. Electromyography showed irritative myopathy of the proximal muscles and sensorimotor polyneuropathy. Muscle biopsy (left vastus lateralis) showed massive necrosis of muscle fibers with negligible inflammatory infiltrates, complement membrane attack complex deposition on endomysial capillaries, and moderate upregulation of major histocompatibility complex-I. Computed tomography of the thorax showed a nodular mass in the apex of the right lung. The patient was diagnosed with paraneoplastic necrotizing myopathy. In spite of high-dose corticoid therapy, he died 1 month later because of his aggressive cancer. Subsequent electron microscopic examination of a muscle biopsy specimen showed thickened walls and typical pipestem changes of the endomysial capillaries, with swollen endothelial cells. Poorly differentiated adenocarcinoma of the lung was confirmed on post-mortem histological examination. Conclusions: Paraneoplastic necrotizing myopathy is a rare syndrome with outcomes ranging from fast progression to complete recovery. Treatment with corticosteroids is often ineffective, and prognosis depends mainly on the characteristics of the underlying cancer. This case shows that paraneoplastic necrotizing myopathy may have an atypical appearance, and should be considered in elderly patients with neoplastic disease. In this case, the diagnosis was delayed by the unusual clinical picture that suggested heart disease rather than muscle disease

    Long non-coding RNAs are involved in multiple immunological pathways in response to vaccination

    Get PDF
    Understanding the mechanisms of vaccine-elicited protection contributes to the development of new vaccines. The emerging field of Systems Vaccinology provides detailed information on host responses to vaccination and has been successfully applied to study the molecular mechanisms of several vaccines. Long noncoding RNAs (lncRNAs) are crucially involved in multiple biological processes but their role in vaccine-induced immunity has not been explored. We performed an analysis of over 2,000 blood transcriptome samples from 17 vaccine cohorts to identify lncRNAs potentially involved with antibody responses to Influenza and Yellow Fever vaccines. We have created an online database where all results from this analysis can be accessed easily. We found that lncRNAs participate in distinct immunological pathways related to vaccine-elicited responses. Among them, we showed that the expression of lncRNA FAM30A was high in B-cells and correlates with the expression of Immunoglobulin genes located in its genomic vicinity. We also identified altered expression of these lncRNAs in RNA-seq data from a new cohort of children following immunization with intranasal live attenuated influenza vaccine, suggesting a common role across several diverse vaccines. Taken together, these findings provide the first evidence that lncRNAs play a significant impact on the immune responses induced by vaccination

    Levels of expression and immunogenicity of attenuated Salmonella enterica serovar typhimurium strains expressing Escherichia coli mutant heat-labile enterotoxin

    Get PDF
    The effects of heterologous gene dosage as well as Salmonella typhimurium strain variability on immune response toward both the heterologous antigen, the nontoxic mutant of the Escherichia coli heat-labile enterotoxin LTK63, and the carrier Salmonella strain have been analyzed, Effects of a single integration into the host DNA and different-copy-number episomal vectors were compared in S. typhimurium Delta cya Delta crp Delta asd strains of two different serotypes, UK-1 and SR-11, Expression of the enterotoxin in the different Salmonella isolates in vitro was found to vary considerably and, for the episomal vectors, to correlate with the plasmid copy number, LTK63-specific serum immunoglobulin G (IgG) and mucosal immunoglobulin A (IgA) antibodies were highest in mice immunized with the high-level-expression strain. High anti-LTK63 IgG and IgA titers were found to correspond to higher anti-Salmonella immunity, suggesting that LTK63 exerts an adjuvant effect on response to the carrier. Statistically significant differences in anti-LTK63 immune response were observed between groups of mice immunized with the attenuated Delta cya Delta crp UK-I and SR-II derivatives producing the antigen at the same rate, These data indicate that the same attenuation in S, typhimurium strains of different genetic backgrounds can influence significantly the immune response toward the heterologous antigen. Moreover, delivery of the LTK63 enterotoxin to the immune system by attenuated S. typhimurium strains is effective only when synthesis of the antigen is very high during the initial phase of invasion, while persistence of the S. typhimurium strain in deep tissues has only marginal influence.66122423
    corecore