4,444 research outputs found

    Neutrino optics and oscillations in gravitational fields

    Full text link
    We study the propagation of neutrinos in gravitational fields using wave functions that are exact to first order in the metric deviation. For illustrative purposes, the geometrical background is represented by the Lense-Thirring metric. We derive explicit expressions for neutrino deflection, helicity transitions, flavor oscillations and oscillation Hamiltonian.Comment: 16 page

    Brans-Dicke geometry

    Full text link
    We reveal the non-metric geometry underlying omega-->0 Brans-Dicke theory by unifying the metric and scalar field into a single geometric structure. Taking this structure seriously as the geometry to which matter universally couples, we show that the theory is fully consistent with solar system tests. This is in striking constrast with the standard metric coupling, which grossly violates post-Newtonian experimental constraints.Comment: 8 pages, v2 with additional comment and reference

    Unbiased mm-wave Line Surveys of TW Hya and V4046 Sgr: The Enhanced C2H and CN Abundances of Evolved Protoplanetary Disks

    Full text link
    We have conducted the first comprehensive mm-wave molecular emission line surveys of the evolved circumstellar disks orbiting the nearby T Tauri stars TW Hya and V4046 Sgr AB. Both disks are known to retain significant residual gaseous components, despite the advanced ages of their host stars. Our unbiased broad-band radio spectral surveys of the TW Hya and V4046 Sgr disks were performed with the Atacama Pathfinder Experiment (APEX) 12 meter telescope and are intended to yield a complete census of bright molecular emission lines in the range 275-357 GHz (1.1-0.85 mm). We find that lines of 12CO, 13CO, HCN, CN, and C2H, all of which lie in the higher-frequency range, constitute the strongest molecular emission from both disks in the spectral region surveyed. The molecule C2H is detected here for the first time in both disks, as is CS in the TW Hya disk. The survey results also include the first measurements of the full suite of hyperfine transitions of CN N=3-2 and C2H N=4-3 in both disks. Modeling of these CN and C2H hyperfine complexes in the spectrum of TW Hya indicates that the emission from both species is optically thick and may originate from very cold disk regions. It furthermore appears that the fractional abundances of CN and C2H are significantly enhanced in these evolved protoplanetary disks relative to the fractional abundances of the same molecules in the environments of deeply embedded protostars.Comment: 29 pages, 6 figures; to appear in Vol. 791 of The Astrophysical Journa

    Geometry for the accelerating universe

    Get PDF
    The Lorentzian spacetime metric is replaced by an area metric which naturally emerges as a generalized geometry in quantum string and gauge theory. Employing the area metric curvature scalar, the gravitational Einstein-Hilbert action is re-interpreted as dynamics for an area metric. Without the need for dark energy or fine-tuning, area metric cosmology explains the observed small acceleration of the late Universe.Comment: 4 pages, 1 figur

    New horizons in osteoarthritis

    Get PDF
    Summary Osteoarthritis (OA), also known as degenerative joint disease, is the most frequent chronic musculoskeletal disease and the leading cause of disability in elderly persons. There are currently at least 27 million persons afflicted with OA in the United States, and the annual cost to society in medical care and wage loss is expected to reach nearly $100 billion dollars by 2020, with consequent increased spending on its diagnosis and treatment, side-effect prevention, and loss of productivity. Despite this enormous burden, many aspects of OA are still unknown, with implications not only in terms of diagnosis and assessment but also with regard to therapy. Awareness of this state of affairs has attracted many researchers to this field, making OA one of the most actively studied sectors of rheumatology. Although some clinicians are unaware of recent advances, there is a large body of publications indicating that much has been achieved. Major progress has been made in formulating better definitions of risk factors, in particular in indicating the responsibility of biomechanical and genetic factors, and, with regard to pathogenesis, underlining the role of subchondral bone, cytokines and proteinases. Assessment of OA activity and its progression has been improved with the advent of biomarkers and new imaging procedures, in particular sonography and magnetic resonance imaging (MRI), but also of better clinical instruments, including more reliable patient questionnaires. Information from ongoing studies may improve the to some extent incomplete definition of OA phenotypes. Finally, promising new horizons have been opened up even with regard to the treatment of OA, which is still for the most part unsatisfactory except for surgical replacement therapy. Numerous new substances have been formulated and the findings of trials studying their effects are encouraging, although much has yet to be done

    The psoriatic great toe or the psoriatic onycho-pachydermo-periostitis of great toe (OP3gt)

    Get PDF
    The onycho-pachydermo-periostitis of the great toe is a characteristic feature of psoriatic arthritis first described by Fournie in 1980. In the affected patients, the great toe involvement is characterised by a relevant osteo-periostitis of the distal phalanx, a thickening of the distal soft tissues associated with a psoriatic onychopathy. In most cases, the distal interphalangeal joint is spared. Radiographic and scintigraphic osteo-periostitis of distal phalanx of the great toe are frequent, being found in about 44% of patients with psoriatic arthritis. However, clinical manifestations, with inflammatory inflammation of the great toe, are rare

    Non-Metric Gravity I: Field Equations

    Full text link
    We describe and study a certain class of modified gravity theories. Our starting point is Plebanski formulation of gravity in terms of a triple B^i of 2-forms, a connection A^i and a ``Lagrange multiplier'' field Psi^ij. The generalization we consider stems from presence in the action of an extra term proportional to a scalar function of Psi^ij. As in the usual Plebanski general relativity (GR) case, a certain metric can be constructed from B^i. However, unlike in GR, the connection A^i no longer coincides with the self-dual part of the metric-compatible spin-connection. Field equations of the theory are shown to be relations between derivatives of the metric and components of field Psi, as well as its derivatives, the later being in contrast to the GR case. The equations are of second order in derivatives. An analog of the Bianchi identity is still present in the theory, as well as its contracted version tantamount to energy conservation equation.Comment: 21 pages, no figures (v2) energy conservation equation simplified, note on reality conditions added (v3) minor change

    Radiation-dominated area metric cosmology

    Full text link
    We provide further crucial support for a refined, area metric structure of spacetime. Based on the solution of conceptual issues, such as the consistent coupling of fermions and the covariant identification of radiation fields on area metric backgrounds, we show that the radiation-dominated epoch of area metric cosmology is equivalent to that epoch in standard Einstein cosmology. This ensures, in particular, successful nucleosynthesis. This surprising result complements the previously derived prediction of a small late-time acceleration of an area metric universe.Comment: 23 pages, no figures; references adde
    • …
    corecore