933 research outputs found
The burden of clostridium difficile infection in patients with liver cirrhosis
Clostridium Difficile Infection (CDI) has registered a dramatically increasing incidence in the general population over the past decades. Nowadays, Clostridium Difficile is the leading cause of hospital-acquired diarrhea in Europe and North America. Liver cirrhosis is the final stage of any chronic liver disease (CLD). The most common causes are chronic hepatitis C or B and viral co-infections, alcohol misuse, and nonalcoholic fatty liver disease (NAFLD). CLD and cirrhosis are listed among the ten leading causes of death in the US. Cirrhosis due to any etiology disrupts the homeostatic role of the liver in the body. Cirrhosis-associated immune dysfunction (CAID) leads to alterations in both inherited and acquired systemic and local liver immunity. CAID is caused by increased systemic inflammation and immunodeficiency and it is responsible for 30% of mortality rates all over the world. Clostridium Difficile infection frequently affects patients suffering from liver cirrhosis because of the high number of prolonged hospitalizations, regular use of antibiotics for the prevention or treatment of SBP, proton pump inhibitor (PPI) use, and an overall immunocompromised state. Clostridium Difficile is a Gram-positive bacterium responsible for the high morbidity and mortality rates in patients with cirrhosis, with an essential increase in a 30-day mortality
Exponential dichotomies of evolution operators in Banach spaces
This paper considers three dichotomy concepts (exponential dichotomy, uniform
exponential dichotomy and strong exponential dichotomy) in the general context
of non-invertible evolution operators in Banach spaces. Connections between
these concepts are illustrated. Using the notion of Green function, we give
necessary conditions and sufficient ones for strong exponential dichotomy. Some
illustrative examples are presented to prove that the converse of some
implication type theorems are not valid
Data augmentation and transfer learning to classify malware images in a deep learning context
In the past few years, malware classification techniques have shifted from shallow traditional machine learning models to deeper neural network architectures. The main benefit of some of these is the ability to work with raw data, guaranteed by their automatic feature extraction capabilities. This results in less technical expertise needed while building the models, thus less initial pre-processing resources. Nevertheless, such advantage comes with its drawbacks, since deep learning models require huge quantities of data in order to generate a model that generalizes well. The amount of data required to train a deep network without overfitting is often unobtainable for malware analysts. We take inspiration from image-based data augmentation techniques and apply a sequence of semantics-preserving syntactic code transformations (obfuscations) to a small dataset of programs to generate a larger dataset. We then design two learning models, a convolutional neural network and a bi-directional long short-term memory, and we train them on images extracted from compiled binaries of the newly generated dataset. Through transfer learning we then take the features learned from the obfuscated binaries and train the models against two state of the art malware datasets, each containing around 10 000 samples. Our models easily achieve up to 98.5% accuracy on the test set, which is on par or better than the present state of the art approaches, thus validating the approach
Beam Voltage Effects in the Study of Embedded Biological Materials by Secondary Electron Detectors
Thin and semithin sections were extensively examined by the secondary electron (SE) detector in a conventional scanning electron microscope (SEM), and in a transmission electron microscope with a scanning attachment (STEM). Various para-meters, in particular the beam voltage, were shown to affect the final SE image (SEI). As for SEM observation, a surface contrast was imaged at low primary electron (PE) voltages (0.6-2 kV), whereas a subsurface contrast predominated at higher energies (15-30 kV). In STEM, significant differences were not detected by varying the PE in the 20-100 kV range. Surface and subsurface in-formation was simultaneously imaged even though the SEI were better resolved at the highest energy
Endothelialization of a New Dacron Graft in an Experimental Model: Light Microscopy, Electron Microscopy and Immunocytochemistry
Two types of synthetic vascular grafts, Dacron Triaxial and Dacron Gelseal Triaxial, were implanted into both the common carotids of sheep. The animals were sacrificed 1, 2, 8, and 16 weeks after surgery. Multiple specimens, obtained from grafts and anastomoses, were studied by light microscopy, transmission and scanning electron microscopy. A parallel immunocytochemical analysis was performed on some specimens. Dacron Triaxial grafts failed to develop a complete neointimal coverage. Myofibroblasts and fibroblasts were the dominant cells in such synthetic graft. Moreover, focal areas of stripping, platelet deposition, and thrombosis were observed at 8 and 16 weeks.
In contrast, a stable endothelial coverage developed on the Gelseal Triaxial grafts after 16 weeks
Formal Framework for Property-driven Obfuscations
We study the existence and the characterization of function transformers that minimally or maximally modify a function in order to reveal or conceal a certain property. Based on this general formal framework we develop a strategy for the design of the maximal obfuscating transformation that conceals a given property while revealing the desired observational behaviou
Recent environmental changes in the area of La Maddalena Harbour (Sardinia, Italy): data from mollusks and benthic foraminifera
Mollusks and benthic foraminifera are reliable tools to paleo-environmental reconstructions because they commonly occur in most marine habitats and are sensitive to major and short-lived changes of environmental drivers, induced by both natural and anthropogenic events. Their community structure provides useful information about the characteristics of their habitat and some species are sensitive to specific environmental controls. Features such as changes in species composition and community, or variation in test morphology provide evidence of fluctuation of several environmental factors. Therefore, both mollusks and benthic foraminifera can be used as an efficient method for identifying the history and ecological trajectory of marine ecosystems.
This study focuses on the macro- (mollusks) and micropaleontological (benthic foraminifera) study of a 3 m long sediment core collected in the former military arsenal of the La Maddalena harbor (N Sardinia, Italy), at a depth of 15 m. The core site is located on the S-E coast of La Maddalena island, that underwent a complex history of human occupation along with natural environmental evolution and human-derived pressures. We aimed to reconstruct the main environmental changes recorded in the fossil benthic communities along the core, and to propose the most likely factors that caused these changes. Both mollusks and benthic foraminifera have been picked from the core, identified at genus/species level and counted. Ecological indications for each species have been extracted from literature. Univariate and multivariate statistics have been applied to highlight the community dynamics.
More than 90 species of benthic foraminifera have been identified, and 101 mollusk species (846 specimens). The foraminifera diversity indices show a general reduction from the first 50 cm downcore. This slight decline is accompanied by changes in foraminiferal assemblages. The results concerning changes in foraminiferal species composition, their abundance and biodiversity, supported by statistical analyses (cluster analysis), allowed identification of three major foraminiferal associations corresponding to different marine coastal settings. The same results have been obtained by using mollusks and their ecological significance in the framework of benthic marine bionomics. Species are related to infralittoral vegetated bottom such as Posidonia meadows (HP) or photophilous algae through the core, but with variation in percentage of abundance, and HP species decreases from the bottom to the top, whereas species related to muddy bottom follow the opposite trend (coastal detritic mud, deep mud). This testifies that the area underwent a progressive reduction of Posidonia meadows and light-loving algae with a shift toward muddy bottoms, possibly related to the effect of the intensive renovation works of the harbor area. Moreover, radiocarbon dating obtained from Cerithium specimens indicated that the sedimentation rate increases in the upper portion of the core, according to the ecological signal reconstructed by the analysis of the mollusk assemblage
Healing of Prosthetic Arterial Grafts
Numerous synthetic biomaterials have been developed as vascular substitutes. In vitro, ex vivo and in vivo studies have demonstrated that in animals, selected materials, i.e., Dacron and ePTFE (expanded polytetrafluoroethylene) grafts, are successfully incorporated in both the large and the small caliber host arteries through a process which is generally referred to as graft healing. Morphologically, this process consists of a series of complex events including fibrin deposition and degradation, monocyte-macrophage recruitment and flow-oriented cell-layer generation, this last event being the complete endothelialization of the arterial substitute.
In contrast to experimental animals, the flow surface of synthetic vascular grafts remains unhealed in humans, particularly in the small caliber conduits. Healing in man consists of graft incorporation by the perigraft fibrous tissue response with a surface covered by more or less compacted, cross-linked fibrin.
It is therefore obvious that: i) marked differences in graft healing exist between animals and man; and ii) the usual mechanisms of graft endothelialization are partially ineffective in man.
In order to guarantee the patency of synthetic vascular grafts for human small artery bypass, new strategies and approaches have recently been attempted. In particular, the endothelial cell seeding approach has been successfully accomplished in animals and is being experimented in human clinical studies.
The problems and results of this biological approach are outlined in this paper
Sustainable solutions for the construction sector: integration of secondary raw materials in the production cycle of concrete
The construction industry is one of the largest consumers of raw materials and energy and one of the highest contributor to green-houses gases emissions. In order to become more sustainable it needs to reduce the use of both raw materials and energy, thus lim-iting its environmental impact. Developing novel technologies to integrate secondary raw materials (i.e. lightweight recycled aggre-gates and alkali activated “cementless” binders - geopolymers) in the production cycle of concrete is an all-inclusive solution to im-prove both sustainability and cost-efficiency of construction industry. SUS-CON “SUStainable, Innovative and Energy-Efficiency CONcrete, based on the integration of all-waste materials” is an European project (duration 2012-2015), which aim was the inte-gration of secondary raw materials in the production cycle of concrete, thus resulting in innovative, sustainable and cost-effective building solutions. This paper presents the main outcomes related to the successful scaling-up of SUS-CON concrete solutions in traditional production plants. Two European industrial concrete producers have been involved, to design and produce both pre-cast components (blocks and panels) and ready-mixed concrete. Recycled polyurethane foams and mixed plastics were used as aggre-gates, PFA (Pulverized Fuel Ash, a by-product of coal fuelled power plants) and GGBS (Ground Granulated Blast furnace Slag, a by-product of iron and steel industries) as binders. Eventually, the installation of SUS-CON concrete solutions on real buildings has been demonstrated, with the construction of three mock-ups located in Europe (Spain, Turkey and Romania
- …