114 research outputs found

    Gravity as Archimedes' thrust and a bifurcation in that theory

    Get PDF
    Euler's interpretation of Newton's gravity (NG) as Archimedes' thrust in a fluid ether is presented in some detail. Then a semi-heuristic mechanism for gravity, close to Euler's, is recalled and compared with the latter. None of these two "gravitational ethers" can obey classical mechanics. This is logical since the ether defines the very reference frame, in which mechanics is defined. This concept is used to build a scalar theory of gravity: NG corresponds to an incompressible ether, a compressible ether leads to gravitational waves. In the Lorentz-Poincar\'e version, special relativity is compatible with the ether, but, with the heterogeneous ether of gravity, it applies only locally. A correspondence between metrical effects of uniform motion and gravitation is assumed, yet in two possible versions (one is new). Dynamics is based on a (non-trivial) extension of Newton's second law. The observational status for the theory with the older version of the correspondence is summarized.Comment: 24 pages, invited contribution to the Franco Selleri Festschrift, to appear in Found. Physics. v3: Endnote 45 on absolute simultaneity improved (formerly footnote 6: class file changed to revtex4), a few references updated (and now with titles). v2: minor correction in subsect. 3.2, some wording improvements, and a few references adde

    On a modified-Lorentz-transformation based gravity model confirming basic GRT experiments

    Full text link
    Implementing Poincar\'e's `geometric conventionalism' a scalar Lorentz-covariant gravity model is obtained based on gravitationally modified Lorentz transformations (or GMLT). The modification essentially consists of an appropriate space-time and momentum-energy scaling ("normalization") relative to a nondynamical flat background geometry according to an isotropic, nonsingular gravitational `affecting' function Phi(r). Elimination of the gravitationally `unaffected' S_0 perspective by local composition of space-time GMLT recovers the local Minkowskian metric and thus preserves the invariance of the locally observed velocity of light. The associated energy-momentum GMLT provides a covariant Hamiltonian description for test particles and photons which, in a static gravitational field configuration, endorses the four `basic' experiments for testing General Relativity Theory: gravitational i) deflection of light, ii) precession of perihelia, iii) delay of radar echo, iv) shift of spectral lines. The model recovers the Lagrangian of the Lorentz-Poincar\'e gravity model by Torgny Sj\"odin and integrates elements of the precursor gravitational theories, with spatially Variable Speed of Light (VSL) by Einstein and Abraham, and gravitationally variable mass by Nordstr\"om.Comment: v1: 14 pages, extended version of conf. paper PIRT VIII, London, 2002. v2: section added on effective tensorial rank, references added, appendix added, WEP issue deleted, abstract and other parts rewritten, same results (to appear in Found. Phys.

    Evolutionary Genomics Reveals Lineage-Specific Gene Loss and Rapid Evolution of a Sperm-Specific Ion Channel Complex: CatSpers and CatSperβ

    Get PDF
    The mammalian CatSper ion channel family consists of four sperm-specific voltage-gated Ca2+ channels that are crucial for sperm hyperactivation and male fertility. All four CatSper subunits are believed to assemble into a heteromultimeric channel complex, together with an auxiliary subunit, CatSperβ. Here, we report a comprehensive comparative genomics study and evolutionary analysis of CatSpers and CatSperβ, with important correlation to physiological significance of molecular evolution of the CatSper channel complex. The development of the CatSper channel complex with four CatSpers and CatSperβ originated as early as primitive metazoans such as the Cnidarian Nematostella vectensis. Comparative genomics revealed extensive lineage-specific gene loss of all four CatSpers and CatSperβ through metazoan evolution, especially in vertebrates. The CatSper channel complex underwent rapid evolution and functional divergence, while distinct evolutionary constraints appear to have acted on different domains and specific sites of the four CatSper genes. These results reveal unique evolutionary characteristics of sperm-specific Ca2+ channels and their adaptation to sperm biology through metazoan evolution

    Kimmeridgian-Tithonian sea-level fluctuations in the Uljanovsk-Saratov Basin (Russian Platform)

    Get PDF
    Abstract The Uljanovsk-Saratov Basin, located in the southeast of the Russian Platform, presents an intriguing record of the Kimmeridgian-Tithonian sea-level fluctuations. In the Late Jurassic, this basin was a trough within the Interior Russian Sea. The data available from both outcrops and boreholes have permitted outlining a number of lithostratigraphic units and regional hiatuses in the northeastern segment of the Uljanovsk-Saratov Basin, thus permitting a precise reconstruction of transgressions/regressions and deepenings/shallowings. In total, three transgressive-regressive cycles and two deepening pulses have been established. These regionally documented changes were both related in part to global eustatic changes, and they also corresponded in part to the regional sea-level changes in some basins of Western Europe and Northern Africa, but not to those of the Arabian Platform. Differences observed between the global and regional curves as well as rapid Tithonian sea-level oscillations are explained by the influences of tectonic activity. It is hypothesized that the regional Tithonian oxygen depletion might have been a consequence from the rapid flooding of a densely vegetated land

    Endosymbiont DNA in Endobacteria-Free Filarial Nematodes Indicates Ancient Horizontal Genetic Transfer

    Get PDF
    Background: Wolbachia are among the most abundant symbiotic microbes on earth; they are present in about 66% of all insect species, some spiders, mites and crustaceans, and most filarial nematode species. Infected filarial nematodes, including many pathogens of medical and veterinary importance, depend on Wolbachia for proper development and survival. The mechanisms behind this interdependence are not understood. Interestingly, a minority of filarial species examined to date are naturally Wolbachia-free. Methodology/PrincipalFindings:We used 454 pyrosequencing to survey the genomes of two distantly related Wolbachia- free filarial species, Acanthocheilonema viteae and Onchocerca flexuosa. This screen identified 49 Wolbachia-like DNA sequences in A. viteae and 114 in O. flexuosa. qRT-PCR reactions detected expression of 30 Wolbachia-like sequences in A. viteae and 56 in O. flexuosa. Approximately half of these appear to be transcribed from pseudogenes. In situ hybridization showed that two of these pseudogene transcripts were specifically expressed in developing embryos and testes of both species. Conclusions/Significance: These results strongly suggest that the last common ancestor of extant filarial nematodes was infected with Wolbachia and that this former endosymbiont contributed to their genome evolution. Horizontally transferred Wolbachia DNA may explain the ability of some filarial species to live and reproduce without the endosymbiont while other species cannot

    On the quest for selective constraints shaping the expressivity of the genes casting retropseudogenes in human

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudogenes, the nonfunctional homologues of functional genes are now coming to light as important resources regarding the study of human protein evolution. Processed pseudogenes arising by reverse transcription and reinsertion can provide molecular record on the dynamics and evolution of genomes. Researches on the progenitors of human processed pseudogenes delved out their highly expressed and evolutionarily conserved characters. They are reported to be short and GC-poor indicating their high efficiency for retrotransposition. In this article we focused on their high expressivity and explored the factors contributing for that and their relevance in the milieu of protein sequence evolution.</p> <p>Results</p> <p>We here, analyzed the high expressivity of these genes configuring processed or retropseudogenes by their immense connectivity in protein-protein interaction network, an inclination towards alternative splicing mechanism, a lower rate of mRNA disintegration and a slower evolutionary rate. While the unusual trend of the upraised disorder in contrast with the high expressivity of the proteins encoded by processed pseudogene ancestors is accredited by a predominance of hub-protein encoding genes, a high propensity of repeat sequence containing genes, elevated protein stability and the functional constraint to perform the transcription regulatory jobs. Linear regression analysis demonstrates mRNA decay rate and protein intrinsic disorder as the influential factors controlling the expressivity of these retropseudogene ancestors while the latter one is found to have the most significant regulatory power.</p> <p>Conclusions</p> <p>Our findings imply that, the affluence of disordered regions elevating the network attachment to be involved in important cellular assignments and the stability in transcriptional level are acting as the prevailing forces behind the high expressivity of the human genes configuring processed pseudogenes.</p

    Pogostick: A New Versatile piggyBac Vector for Inducible Gene Over-Expression and Down-Regulation in Emerging Model Systems

    Get PDF
    Non-traditional model systems need new tools that will enable them to enter the field of functional genetics. These tools should enable the exploration of gene function, via knock-downs of endogenous genes, as well as over-expression and ectopic expression of transgenes.We constructed a new vector called Pogostick that can be used to over-express or down-regulate genes in organisms amenable to germ line transformation by the piggyBac transposable element. Pogostick can be found at www.addgene.org, a non-profit plasmid repository. The vector currently uses the heat-shock promoter Hsp70 from Drosophila to drive transgene expression and, as such, will have immediate applicability to organisms that can correctly interpret this promotor sequence. We detail how to clone candidate genes into this vector and test its functionality in Drosophila by targeting a gene coding for the fluorescent protein DsRed. By cloning a single DsRed copy into the vector, and generating transgenic lines, we show that DsRed mRNA and protein levels are elevated following heat-shock. When cloning a second copy of DsRed in reverse orientation into a flanking site, and transforming flies constitutively expressing DsRed in the eyes, we show that endogenous mRNA and protein levels drop following heat-shock. We then test the over-expression vector, containing the complete cDNA of Ultrabithorax (Ubx) gene, in an emerging model system, Bicyclus anynana. We produce a transgenic line and show that levels of Ubx mRNA expression rise significantly following a heat-shock. Finally, we show how to obtain genomic sequence adjacent to the Pogostick insertion site and to estimate transgene copy number in genomes of transformed individuals.This new vector will allow emerging model systems to enter the field of functional genetics with few hurdles

    The map-1 Gene Family in Root-Knot Nematodes, Meloidogyne spp.: A Set of Taxonomically Restricted Genes Specific to Clonal Species

    Get PDF
    Taxonomically restricted genes (TRGs), i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN) Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s) together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s) in the specificity of the plant-RKN interactions

    The Wolbachia endosymbiont as an anti-filarial nematode target

    Get PDF
    Human disease caused by parasitic filarial nematodes is a major cause of global morbidity. The parasites are transmitted by arthropod intermediate hosts and are responsible for lymphatic filariasis (elephantiasis) or onchocerciasis (river blindness). Within these filarial parasites are intracellular alpha-proteobacteria, Wolbachia, that were first observed almost 30 years ago. The obligate endosymbiont has been recognized as a target for anti-filarial nematode chemotherapy as evidenced by the loss of worm fertility and viability upon antibiotic treatment in an extensive series of human trials. While current treatments with doxycycline and rifampicin are not practical for widespread use due to the length of required treatments and contraindications, anti-Wolbachia targeting nevertheless appears a promising alternative for filariasis control in situations where current programmatic strategies fail or are unable to be delivered and it provides a superior efficacy for individual therapy. The mechanisms that underlie the symbiotic relationship between Wolbachia and its nematode hosts remain elusive. Comparative genomics, bioinfomatic and experimental analyses have identified a number of potential interactions, which may be drug targets. One candidate is de novo heme biosynthesis, due to its absence in the genome sequence of the host nematode, Brugia malayi, but presence in Wolbachia and its potential roles in worm biology. We describe this and several additional candidate targets, as well as our approaches for understanding the nature of the host-symbiont relationship

    The Mitochondrial Genome of the Lycophyte Huperzia squarrosa: The Most Archaic Form in Vascular Plants

    Get PDF
    Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin
    corecore