85 research outputs found

    Comparative Assessment of Microbial Air Contamination in Labor and Postnatal Ward at Mzuzu Central Hospital

    Get PDF
    Nosocomial infections are rapidly becoming a burden especially in developing countries. Neonates are part of the individuals who are at a high risk and mostly affected. Environmental contamination is one of the key agents of these infections. This study aimed to comparatively assess the microbial air contamination before and after cleaning in the labor and postnatal ward at Mzuzu Central Hospital. A comparative study design was employed, with a sample size of 60 paired culture plates (60 MacConkey agar plates and 60 Blood agar plates). Passive technique of air sampling was used to sample air there after 24 hours of culturing and isolation on blood agar and MacConkey agar for identification and quantification of bacterial colonies. Room observations were also done. There was a significant difference between contaminations before and after cleaning, only when MacConkey agar was used. The microorganisms that were identified include; Staphylococci aureus, Klebsiella, coagulase negative staphylococci and non-hemolytic streptococcus. Factors found to contribute to air contamination were, the size of the rooms, traffic of people in a room and number of people present in a room. This study has identified the hazard that these two wards are containing and suggests interventions to avoid nosocomial infections in the neonates

    Transition from Mott insulator to superconductor in GaNb4_{4}Se8_{8} and GaTa4_{4}Se8_{8} under high pressure

    Full text link
    Electronic conduction in GaM4_{4}Se8_{8} (M=Nb;Ta) compounds with the fcc GaMo4_{4}S8_{8}-type structure originates from hopping of localized unpaired electrons (S=1/2) among widely separated tetrahedral M4_{4} metal clusters. We show that under pressure these systems transform from Mott insulators to a metallic and superconducting state with TC_{C}=2.9 and 5.8K at 13 and 11.5GPa for GaNb4_{4}Se8_{8} and GaTa4_{4}Se8_{8}, respectively. The occurrence of superconductivity is shown to be connected with a pressure-induced decrease of the MSe6_{6} octahedral distortion and simultaneous softening of the phonon associated with MSe-bonds.Comment: 10 pages, 5 figure

    A clinical and molecular characterisation of CRB1-associated maculopathy

    Get PDF
    To date, over 150 disease-associated variants in CRB1 have been described, resulting in a range of retinal disease phenotypes including Leber congenital amaurosis and retinitis pigmentosa. Despite this, no genotype–phenotype correlations are currently recognised. We performed a retrospective review of electronic patient records to identify patients with macular dystrophy due to bi-allelic variants in CRB1. In total, seven unrelated individuals were identified. The median age at presentation was 21 years, with a median acuity of 0.55 decimalised Snellen units (IQR = 0.43). The follow-up period ranged from 0 to 19 years (median = 2.0 years), with a median final decimalised Snellen acuity of 0.65 (IQR = 0.70). Fundoscopy revealed only a subtly altered foveal reflex, which evolved into a bull’s-eye pattern of outer retinal atrophy. Optical coherence tomography identified structural changes—intraretinal cysts in the early stages of disease, and later outer retinal atrophy. Genetic testing revealed that one rare allele (c.498_506del, p.(Ile167_Gly169del)) was present in all patients, with one patient being homozygous for the variant and six being heterozygous. In trans with this, one variant recurred twice (p.(Cys896Ter)), while the four remaining alleles were each observed once (p.(Pro1381Thr), p.(Ser478ProfsTer24), p.(Cys195Phe) and p.(Arg764Cys)). These findings show that the rare CRB1 variant, c.498_506del, is strongly associated with localised retinal dysfunction. The clinical findings are much milder than those observed with bi-allelic, loss-of-function variants in CRB1, suggesting this in-frame deletion acts as a hypomorphic allele. This is the most prevalent disease-causing CRB1 variant identified in the non-Asian population to date

    MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales

    Get PDF
    Mathematical modeling and quantitative study of biological motility (in particular, of motility at microscopic scales) is producing new biophysical insight and is offering opportunities for new discoveries at the level of both fundamental science and technology. These range from the explanation of how complex behavior at the level of a single organism emerges from body architecture, to the understanding of collective phenomena in groups of organisms and tissues, and of how these forms of swarm intelligence can be controlled and harnessed in engineering applications, to the elucidation of processes of fundamental biological relevance at the cellular and sub-cellular level. In this paper, some of the most exciting new developments in the fields of locomotion of unicellular organisms, of soft adhesive locomotion across scales, of the study of pore translocation properties of knotted DNA, of the development of synthetic active solid sheets, of the mechanics of the unjamming transition in dense cell collectives, of the mechanics of cell sheet folding in volvocalean algae, and of the self-propulsion of topological defects in active matter are discussed. For each of these topics, we provide a brief state of the art, an example of recent achievements, and some directions for future research

    To degrade or not to degrade:mechanisms and significance of endocytic recycling

    Get PDF

    Acoustic Excitation of Structures Analyzed by the Statistical Energy Method

    No full text

    Experimental assessment of the influence of heat pipes on a nutating satellite

    No full text
    corecore