194 research outputs found

    Evaluando los niveles tróficos de dos tiburones oceånicos del Océano Pacífico suroriental

    Get PDF
    IndexaciĂłn: Web of ScienceStable isotope analyses for shortfin mako (Isurus oxyrinchus) and blue sharks (Prionace glauca) were conducted to assess their trophic position in two periods of time (before 1980 and after 2000) in the Southeastern Pacific waters (SEP). Both sharks showed that their trophic position decreased over time (P < 0.05). Many factors could be involved in this change such as dietary shifts, prey availability, or indirect fishing effects in SEP waters.RESUMEN. Para evaluar los niveles trĂłficos de los tiburones marrajo (Isurus oxyrinchus) y azulejo (Prionace glauca) en dos perĂ­odos de tiempo (previo a 1980 y posterior al 2000) en aguas del PacĂ­fico suroriental (SEP), se realizaron anĂĄlisis de isĂłtopos estables. Ambos tiburones mostraron un descenso del nivel trĂłfico en el tiempo (P < 0,05). Varios son los factores que pueden estar involucrados en este evento, como los cambios dietarios, la disponibilidad de las presas o los efectos indirectos de la pesquerĂ­a en aguas del PacĂ­fico suroriental.http://www.lajar.cl/pdf/imar/v44n2/Art%C3%ADculo_44_2_25.pd

    Defences against brood parasites from a social immunity perspective

    Get PDF
    Parasitic interactions are so ubiquitous that all multicellular organisms have evolved a system of defences to reduce their costs, whether the parasites they encounter are the “classic parasites” that feed on the individual, or “brood parasites” that usurp parental care. Many parallels have been drawn between defences deployed against both types of parasite, but typically, whilst defences against classic parasites have been selected to protect survival, those against brood parasites have been selected to protect the parent’s inclusive fitness, suggesting that the selection pressures they impose are fundamentally different. However, there is another class of defences against classic parasites that have specifically been selected to protect an individual’s inclusive fitness, known as “social immunity”. Social immune responses include the anti-parasite defences typically provided for others in kin-structured groups, such as the antifungal secretions produced by termite workers to protect the brood. Defences against brood parasites, therefore, are more closely aligned with social immune responses. Much like social immunity, host defences against brood parasitism are employed by a donor (a parent) for the benefit of one or more recipients (typically kin), and as with social defences against classic parasites, defences have therefore evolved to protect the donor’s inclusive fitness, not the survival or ultimately the fitness of individual recipients This can lead to severe conflicts between the different parties, whose interests are not always aligned. Here we consider defences against brood parasitism in the light of social immunity, at different stages of parasite encounter, addressing where conflicts occur and how they might be resolved. We finish with considering how this approach could help us to address longstanding questions in our understanding of brood parasitism.Peer reviewe

    The macroecology of chemical communication in lizards: do climatic factors drive the evolution of signalling glands?

    Get PDF
    Chemical communication plays a pivotal role in shaping sexual and ecological interactions among animals. In lizards, fundamental mechanisms of sexual selection such as female mate choice have rarely been shown to be influenced by quantitative phenotypic traits (e.g., ornaments), while chemical signals have been found to potentially influence multiple forms of sexual and social interactions, including mate choice and territoriality. Chemical signals in lizards are secreted by glands primarily located on the edge of the cloacae (precloacal glands, PG) and thighs (femoral glands), and whose interspecific and interclade number ranges from 0 to >100. However, elucidating the factors underlying the evolution of such remarkable variation remains an elusive endeavour. Competing hypotheses suggest a dominant role for phylogenetic conservatism (i.e., species within clades share similar numbers of glands) or for natural selection (i.e., their adaptive diversification results in deviating numbers of glands from ancestors). Using the prolific Liolaemus lizard radiation from South America (where precloacal glands vary from 0-14), we present one of the largest-scale tests of both hypotheses to date. Based on climatic and phylogenetic modelling, we show a clear role for both phylogenetic inertia and adaptation underlying gland variation: (i) solar radiation, net primary productivity, topographic heterogeneity and precipitation range have a significant effect on number of PG variation, (ii) humid and cold environments tend to concentrate species with a higher number of glands, (iii) there is a strong phylogenetic signal that tends to conserve the number of PG within clades. Collectively, our study confirms that the inertia of niche conservatism can be broken down by the need of species facing different selection regimes to adjust their glands to suit the demands of their specific environments

    A quantitative analysis of objective feather color assessment: Measurements in the laboratory do not reflect true plumage color

    Get PDF
    © 2016 American Ornithologists' Union.An important driver of the evolution of animal coloration is sexual selection operating on traits that are used to transmit information to rivals and potential mates, which has a major impact on fitness. Reflectance spectrometry has become a standard color-measuring tool, especially after the discovery of tetrachromacy in birds and their ability to detect UV light. Birds' plumage patterns may be invisible to humans, and therefore the establishment of reliable and quantitatively objective ways of assessing coloration not dependent on human vision is a technical need of primary importance. Plumage coloration measurements can be taken directly on live birds in the field, or in the laboratory (e.g., on collected feathers). However, which of these 2 approaches offers a more reliable, repeatable sampling method remains an unsolved question. Using a spectrophotometer, we measured melanin-based coloration in the plumage of Barn Swallows (Hirundo rustica). We assessed the repeatability of measures obtained with both traditional sampling methods to quantitatively determine their reliability. We used an ANOVA-based method for calculating the repeatability of measurements from 2 years separately, and a GLMM-based method to calculate overall adjusted repeatabilities for both years. The results of our study indicate a great disparity between color measurements obtained using both sampling methods and a low comparability across them. Assuming that measurements taken in the field reflect the real or "true" color of plumage, we may conclude that there is a lack of reliability of the laboratory method to reflect this true color in melanin-based plumages. Likewise, we recommend the use of the GLMM-based statistical method for repeatability calculations, as it allows the inclusion of random factors and the calculation of more realistic, adjusted repeatabilities. It also reduces the number of necessary tests, thereby increasing power, and it allows easy calculation of 95% CIs, a measure of the reliability and precision of effect-size calculations.published_or_final_versio

    Observation of Replica Symmetry Breaking in the 1D Anderson Localization Regime in an Erbium-Doped Random Fiber Laser

    Full text link
    The analogue of the paramagnetic to spin-glass phase transition in disordered magnetic systems, leading to the phenomenon of replica symmetry breaking, has been recently demonstrated in a two-dimensional random laser consisting of an organic-based amorphous solid-state thin film. We report here the first demonstration of replica symmetry breaking in a one-dimensional photonic system consisting of an erbium-doped random fiber laser operating in the continuous-wave regime based on a unique random fiber grating system, which plays the role of the random scatterers and operates in the Anderson localization regime. The clear transition from a photonic paramagnetic to a photonic spin glass phase, characterized by the probability distribution function of the Parisi overlap, was verified and characterized. In this unique system, the radiation field interacts only with the gain medium, and the fiber grating, which provides the disordered feedback mechanism, does not interfere with the pump

    Turbulence Hierarchy in a Random Fibre Laser

    Get PDF
    Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here, we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold, and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov's theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform.Comment: 9 pages, 5 figure

    Cytosolic NUAK1 Enhances ATP Production by Maintaining Proper Glycolysis and Mitochondrial Function in Cancer Cells

    Get PDF
    IndexaciĂłn: Scopus.NUAK1 is an AMPK-related kinase located in the cytosol and the nucleus, whose expression associates with tumor malignancy and poor patient prognosis in several cancers. Accordingly, NUAK1 was associated with metastasis because it promotes cell migration and invasion in different cancer cells. Besides, NUAK1 supports cancer cell survival under metabolic stress and maintains ATP levels in hepatocarcinoma cells, suggesting a role in energy metabolism in cancer. However, the underlying mechanism for this metabolic function, as well as its link to NUAK1 subcellular localization, is unclear. We demonstrated that cytosolic NUAK1 increases ATP levels, which associates with increased mitochondrial respiration, supporting that cytosolic NUAK1 is involved in mitochondrial function regulation in cancer cells. NUAK1 inhibition led to the formation of “donut-like” structures, providing evidence of NUAK1-dependent mitochondrial morphology regulation. Additionally, our results indicated that cytosolic NUAK1 increases the glycolytic capacity of cancer cells under mitochondrial inhibition. Nuclear NUAK1 seems to be involved in the metabolic switch to glycolysis. Altogether, our results suggest that cytosolic NUAK1 participates in mitochondrial ATP production and the maintenance of proper glycolysis in cancer cells. Our current studies support the role of NUAK1 in bioenergetics, mitochondrial homeostasis, glycolysis and metabolic capacities. They suggest different metabolic outcomes depending on its subcellular localization. The identified roles of NUAK1 in cancer metabolism provide a potential mechanism relevant for tumor progression and its association with poor patient prognosis in several cancers. Further studies could shed light on the molecular mechanisms involved in the identified metabolic NUAK1 functions. © Copyright © 2020 Escalona, Muñoz, Pincheira, Elorza and Castro.https://www.frontiersin.org/articles/10.3389/fonc.2020.01123/ful
    • 

    corecore