25 research outputs found

    Letter to the Editor

    No full text

    Meiosis I Arrest Abnormalities Lead to Severe Oligozoospermia in Meiosis 1 Arresting Protein (M1ap)-Deficient Mice

    No full text
    Meiosis 1 arresting protein (M1ap) is a novel vertebrate gene expressed exclusively in germ cells of the embryonic ovary and the adult testis. In male mice, M1ap expression, which is present from spermatogonia to secondary spermatocytes, is evolutionarily conserved and has a specific spatial and temporal pattern suggestive of a role during germ cell development. To test its function, mice deficient in M1ap were created. Whereas females had histologically normal ovaries, males exhibited reduced testicular size and a myriad of tubular defects, which led to severe oligozoospermia and infertility. Although some germ cells arrested at the zygotene/pachytene stages, most cells advanced to metaphase I before arresting and entering apoptosis. Cells that reached metaphase I were unable to properly align their chromosomes at the metaphase plate due to abnormal chromosome synapses and failure to form crossover foci. Depending on the state of tubular degeneration, all germ cells, with the exemption of spermatogonia, disappeared; with further deterioration, tubules displaying only Sertoli cells reminiscent of Sertoli cell-only syndrome in humans were observed. Our results uncovered an essential role for M1ap as a novel germ cell gene not previously implicated in male germ cell development and suggest that mutations in M1AP could account for some cases of nonobstructive oligozoospermia in men

    Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness

    No full text
    The recent identification of “side population” (SP) cells in a number of unrelated human cancers and their normal tissue sources has renewed interest in the hypothesis that cancers may arise from somatic stem/progenitor cells. The high incidence of recurrence attributable to multidrug resistance and the multiple histologic phenotypes indicative of multipotency suggests a stem cell-like etiology of ovarian cancer. Here we identify and characterize SP cells from two distinct genetically engineered mouse ovarian cancer cell lines. Differential efflux of the DNA-binding dye Hoechst 33342 from these cell lines defined a human breast cancer-resistance protein 1-expressing, verapamil-sensitive SP of candidate cancer stem cells. In vivo, mouse SP cells formed measurable tumors sooner than non-SP (NSP) cells when equal numbers were injected into the dorsal fat pad of nude mice. The presence of Mullerian Inhibiting Substance (MIS) signaling pathway transduction molecules in both SP and NSP mouse cells led us to investigate the efficacy of MIS against these populations in comparison with traditional chemotherapies. MIS inhibited the proliferation of both SP and NSP cells, whereas the lipophilic chemotherapeutic agent doxorubicin more significantly inhibited the NSP cells. Finally, we identified breast cancer-resistance protein 1-expressing verapamil-sensitive SPs in three of four human ovarian cancer cell lines and four of six patient primary ascites cells. In the future, individualized therapy must incorporate analysis of the stem cell-like subpopulation of ovarian cancer cells when designing therapeutic strategies for ovarian cancer patients

    Hospital readmission after distal pancreatectomy is predicted by specific intra- and post-operative factors

    No full text
    Background: Distal pancreatectomy (DP) continues to carry a significant risk of morbidity resulting in hospital readmissions and increased costs. Prognostic factors predicting 30-day readmission after DP were evaluated. Methods: Data were collected from 946 patients undergoing DP at the University of Verona Hospital Trust and the Massachusetts General Hospital between 2004 and 2014. Patients were divided into a derivation and a validation cohort. Results: The 30-day readmission rate was 13.9%. Predictors of readmission were age over 60 years (OR 1.8), intraoperative transfusions (OR 2.02), CR-POPF (OR 2.4), abdominal abscesses (OR 3.9), and urinary tract infections (OR 5.9). The score generated by the derivation cohort was validated identifying three different categories with a progressively increased risk for readmission. Conclusion: One out of seven patients undergoing DP will be readmitted within 30 days of discharge. Comorbidities seems not to affect the risk. A 10-point score predicts the risk of 30-days readmission

    Mullerian Inhibiting Substance enhances subclinical doses of chemotherapeutic agents to inhibit human and mouse ovarian cancer

    No full text
    Mullerian Inhibiting Substance (MIS), a biological modifier that causes regression of Mullerian ducts in male embryos, is effective as a single agent in vitro and in vivo against human and mouse ovarian cancer cell lines expressing MIS type II receptor; however, little is known about how recombinant human MIS (rhMIS), now being scaled for preclinical trials, could be used in combination with cytotoxic or targeted chemotherapeutic agents. Mouse serous and endometrioid ovarian carcinoma cell lines were tested in vitro against rhMIS alone and with doxorubicin, paclitaxel, or cisplatin as agents in clinical use. Because MIS releases FK506 binding protein (FKBP12), which activates the mammalian target of rapamycin (mTOR) downstream of Akt, rhMIS and rapamycin combinations were tested. MIS increases p16 protein levels, and 5′-Aza-2′-deoxycytidine (AzadC) induces p16 mRNA; therefore, they were used in combination in vitro and in vivo with a human ovarian cancer cell line. A paclitaxel-resistant human ovarian cancer cell line and its parental line both respond to rhMIS in vitro. Additivity, synergy, or competition was observed with MIS and rapamycin, AzadC, doxorubicin, cisplatin, and paclitaxel, suggesting that MIS in combination with selective targeted therapies might achieve greater activity against ovarian cancer than the use of each individual agent alone. These assays and statistical analyses could be useful in selecting rhMIS and chemotherapeutic agent combinations that enhance clinical efficacy and reduce toxicity
    corecore