511 research outputs found
Theoretical study of a plasma accelerator
Two-dimensional unsteady flow established in an electrodeless traveling wave plasma accelerator was theoretically analyzed to help explain, and possibly predict, phenomena appearing during experiments on problems of acceleration of an ionized fluid plasma
Sub-Alfvenic flow in a duct with a nonuniform magnetic field
Flow of conducting fluid in duct with nonuniform magnetic fiel
Two-dimensional Unsteady Flow in a Traveling Wave Plasma Accelerator
Two-dimensional unsteady flow in traveling wave plasma accelerator studied using small perturbation theor
Resolving singular forces in cavity flow: Multiscale modeling from atoms to millimeters
A multiscale approach for fluid flow is developed that retains an atomistic
description in key regions. The method is applied to a classic problem where
all scales contribute: The force on a moving wall bounding a fluid-filled
cavity. Continuum equations predict an infinite force due to stress
singularities. Following the stress over more than six decades in length in
systems with characteristic scales of millimeters and milliseconds allows us to
resolve the singularities and determine the force for the first time. The
speedup over pure atomistic calculations is more than fourteen orders of
magnitude. We find a universal dependence on the macroscopic Reynolds number,
and large atomistic effects that depend on wall velocity and interactions.Comment: 4 pages,3 figure
Chemical ozone loss in the Arctic winter 1991–1992
Chemical ozone loss in winter 1991–1992 is recalculated based on observations of the HALOE satellite instrument, Version 19, ER-2 aircraft measurements and balloon data. HALOE satellite observations are shown to be reliable in the lower stratosphere below 400 K, at altitudes where the measurements are most likely disturbed by the enhanced sulfate aerosol loading, as a result of the Mt.~Pinatubo eruption in June 1991. Significant chemical ozone loss (13–17 DU) is observed below 380 K from Kiruna balloon observations and HALOE satellite data between December 1991 and March 1992. For the two winters after the Mt. Pinatubo eruption, HALOE satellite observations show a stronger extent of chemical ozone loss towards lower altitudes compared to other Arctic winters between 1991 and 2003. In spite of already occurring deactivation of chlorine in March 1992, MIPAS-B and LPMA balloon observations indicate that chlorine was still activated at lower altitudes, consistent with observed chemical ozone loss occurring between February and March and April. Large chemical ozone loss of more than 70 DU in the Arctic winter 1991–1992 as calculated in earlier studies is corroborated here
Traveling Wave Fronts and Localized Traveling Wave Convection in Binary Fluid Mixtures
Nonlinear fronts between spatially extended traveling wave convection (TW)
and quiescent fluid and spatially localized traveling waves (LTWs) are
investigated in quantitative detail in the bistable regime of binary fluid
mixtures heated from below. A finite-difference method is used to solve the
full hydrodynamic field equations in a vertical cross section of the layer
perpendicular to the convection roll axes. Results are presented for
ethanol-water parameters with several strongly negative separation ratios where
TW solutions bifurcate subcritically. Fronts and LTWs are compared with each
other and similarities and differences are elucidated. Phase propagation out of
the quiescent fluid into the convective structure entails a unique selection of
the latter while fronts and interfaces where the phase moves into the quiescent
state behave differently. Interpretations of various experimental observations
are suggested.Comment: 46 pages, 11 figures. Accepted for publication in Phys. Rev.
Friction Drag on a Particle Moving in a Nematic Liquid Crystal
The flow of a liquid crystal around a particle does not only depend on its
shape and the viscosity coefficients but also on the direction of the
molecules. We studied the resulting drag force on a sphere moving in a nematic
liquid crystal (MBBA) in a low Reynold's number approach for a fixed director
field (low Ericksen number regime) using the computational artificial
compressibility method. Taking the necessary disclination loop around the
sphere into account, the value of the drag force anisotropy
(F_\perp/F_\parallel=1.50) for an exactly computed field is in good agreement
with experiments (~1.5) done by conductivity diffusion measurements. We also
present data for weak anchoring of the molecules on the particle surface and of
trial fields, which show to be sufficiently good for most applications.
Furthermore, the behaviour of the friction close to the transition point
nematic isotropic and for a rod-like and a disc-like liquid crystal will be
given.Comment: 23 pages RevTeX, including 3 PS figures, 1 PS table and 1 PS-LaTeX
figure; Accepted for publication in Phys. Rev.
Vortex disruption by magnetohydrodynamic feedback
In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses—and thus the degree of disruption—that depends on the strength of the background magnetic field (measured by the parameter M, a ratio between the Alfvén speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number Rm). The resulting estimate suggests that significant disruption occurs when M²Rm=O(1). To test our prediction, we analyze direct numerical simulations of vortices generated by the breakup of unstable shear flows with an initially weak background magnetic field. Using the Okubo-Weiss vortex coherence criterion, we introduce a vortex disruption measure, and show that it is consistent with our predicted scaling, for vortices generated by instabilities of both a shear layer and a jet
- …