200 research outputs found

    Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures.

    Get PDF
    OBJECTIVES: This study sought to define contemporary trends in permanent pacemaker use by analyzing a large national database. BACKGROUND: The Medicare National Coverage Determination for permanent pacemaker, which emphasized single-chamber pacing, has not changed significantly since 1985. We sought to define contemporary trends in permanent pacemaker use by analyzing a large national database. METHODS: We queried the Nationwide Inpatient Sample to identify permanent pacemaker implants between 1993 and 2009 using the International Classification of Diseases-Ninth Revision-Clinical Modification procedure codes for dual-chamber (DDD), single-ventricular (VVI), single-atrial (AAI), or biventricular (BiV) devices. Annual permanent pacemaker implantation rates and patient demographics were analyzed. RESULTS: Between 1993 and 2009, 2.9 million patients received permanent pacemakers in the United States. Overall use increased by 55.6%. By 2009, DDD use increased from 62% to 82% (p \u3c 0.001), whereas single-chamber ventricular pacemaker use fell from 36% to 14% (p = 0.01). Use of DDD devices was higher in urban, nonteaching hospitals (79%) compared with urban teaching hospitals (76%) and rural hospitals (72%). Patients with private insurance (83%) more commonly received DDD devices than Medicaid (79%) or Medicare (75%) recipients (p \u3c 0.001). Patient age and Charlson comorbidity index increased over time. Hospital charges ($2011) increased 45.3%, driven by the increased cost of DDD devices. CONCLUSIONS: There is a steady growth in the use of permanent pacemakers in the United States. Although DDD device use is increasing, whereas single-chamber ventricular pacemaker use is decreasing. Patients are becoming older and have more medical comorbidities. These trends have important health care policy implications

    RIF1 acts as a gatekeeper of B cell identity during late differentiation

    Get PDF
    RIF1 is a multifunctional protein that promotes immunoglobulin (Ig) isotype diversification. Whether RIF1 plays additional roles in adaptive immunity is unknown. In this study, we showed that Rif1 expression is upregulated following mature B cell activation, while its deficiency skewed the transcriptional profile of activated B cells towards plasmablasts (PBs) and plasma cells (PCs). Additionally, RIF1 ablation resulted in increased PB formation ex vivo and enhanced terminal differentiation into PCs upon immunization. Therefore, RIF1 serves as a cell identity gatekeeper during late B cell differentiation, providing an additional layer of control in the establishment of humoral immunity

    An NF-Y-Dependent Switch of Positive and Negative Histone Methyl Marks on CCAAT Promoters

    Get PDF
    Background: Histone tails have a plethora of different post-translational modifications, which are located differently in ‘‘open’ ’ and ‘‘closed’ ’ parts of genomes. H3K4me3/H3K79me2 and H4K20me3 are among the histone marks associated with the early establishment of active and inactive chromatin, respectively. One of the most widespread promoter elements is the CCAAT box, bound by the NF-Y trimer. Two of NF-Y subunits have an H2A-H2B-like structure. Principal findings: We established the causal relationship between NF-Y binding and positioning of methyl marks, by ChIP analysis of mouse and human cells infected with a dominant negative NF-YA: a parallel decrease in NF-Y binding, H3K4me3, H3K79me2 and transcription was observed in promoters that are dependent upon NF-Y. On the contrary, changes in the levels of H3K9-14ac were more subtle. Components of the H3K4 methylating MLL complex are not recruited in the absence of NF-Y. As for repressed promoters, NF-Y removal leads to a decrease in the H4K20me3 mark and deposition of H3K4me3. Conclusions: Two relevant findings are reported: (i) NF-Y gains access to its genomic locations independently from the presence of methyl histone marks, either positive or negative; (ii) NF-Y binding has profound positive or negative consequences on the deposition of histone methyl marks. Therefore NF-Y is a fundamental switch at the heart of decisio

    Ancient Ancestry of KFDV and AHFV Revealed by Complete Genome Analyses of Viruses Isolated from Ticks and Mammalian Hosts

    Get PDF
    Alkhurma hemorrhagic fever (AHF) and Kyasanur Forest disease (KFD) viruses both cause serious and sometimes fatal human disease in their respective ranges, Saudi Arabia and India. AHFV was first identified in the mid-1990s and due to its strong genetic similarity to KFDV it has since been considered the result of a recent introduction of KFDV into Saudi Arabia. To gain a better understanding of the evolutionary history of AHFV and KFDV, we sequenced the full-length genomes of 3 KFDV and 16 AHFV. Sequence analyses show a greater genetic diversity within AHFV than previously thought, particularly within the tick population. The phylogeny constructed with these 19 full-length sequences and two AHFV sequences from GenBank indicates AHFV diverged from KFDV almost 700 years ago. Given the presence of competent tick vectors in the regions between and surrounding Saudi Arabia and India and the recent identification of AHFV in Egypt, these results suggest a broader geographic range of AHFV and KFDV, and raise the possibility of other AHFV/KFDV–like viruses circulating in these regions

    A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair

    Get PDF
    To identify new regulators of homologous recombination repair, we carried out a genome-wide short-interfering RNA screen combined with ionizing irradiation using RAD51 foci formation as readout. All candidates were confirmed by independent short-interfering RNAs and validated in secondary assays like recombination repair activity and RPA foci formation. Network analysis of the top modifiers identified gene clusters involved in recombination repair as well as components of the ribosome, the proteasome and the spliceosome, which are known to be required for effective DNA repair. We identified and characterized the RNA polymerase II-associated protein CDC73/Parafibromin as a new player in recombination repair and show that it is critical for genomic stability. CDC73 interacts with components of the SCF/Cullin and INO80/NuA4 chromatin-remodeling complexes to promote Histone ubiquitination. Our findings indicate that CDC73 is involved in local chromatin decondensation at sites of DNA damage to promote DNA repair. This function of CDC73 is related to but independent of its role in transcriptional elongation

    Genome Instability and Transcription Elongation Impairment in Human Cells Depleted of THO/TREX

    Get PDF
    THO/TREX connects transcription with genome integrity in yeast, but a role of mammalian THO in these processes is uncertain, which suggests a differential implication of mRNP biogenesis factors in genome integrity in yeast and humans. We show that human THO depletion impairs transcription elongation and mRNA export and increases instability associated with DNA breaks, leading to hyper-recombination and γH2AX and 53BP1 foci accumulation. This is accompanied by replication alteration as determined by DNA combing. Genome instability is R-loop–dependent, as deduced from the ability of the AID enzyme to increase DNA damage and of RNaseH to reduce it, or from the enhancement of R-loop–dependent class-switching caused by THOC1-depletion in CH12 murine cells. Therefore, mammalian THO prevents R-loop formation and has a role in genome dynamics and function consistent with an evolutionary conservation of the functional connection between these mRNP biogenesis factors and genome integrity that had not been anticipated

    PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC

    Get PDF
    The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay

    The DSIF Subunits Spt4 and Spt5 Have Distinct Roles at Various Phases of Immunoglobulin Class Switch Recombination

    Get PDF
    Class-switch recombination (CSR), induced by activation-induced cytidine deaminase (AID), can be divided into two phases: DNA cleavage of the switch (S) regions and the joining of the cleaved ends of the different S regions. Here, we show that the DSIF complex (Spt4 and Spt5), a transcription elongation factor, is required for CSR in a switch-proficient B cell line CH12F3-2A cells, and Spt4 and Spt5 carry out independent functions in CSR. While neither Spt4 nor Spt5 is required for transcription of S regions and AID, expression array analysis suggests that Spt4 and Spt5 regulate a distinct subset of transcripts in CH12F3-2A cells. Curiously, Spt4 is critically important in suppressing cryptic transcription initiating from the intronic Sμ region. Depletion of Spt5 reduced the H3K4me3 level and DNA cleavage at the Sα region, whereas Spt4 knockdown did not perturb the H3K4me3 status and S region cleavage. H3K4me3 modification level thus correlated well with the DNA breakage efficiency. Therefore we conclude that Spt5 plays a role similar to the histone chaperone FACT complex that regulates H3K4me3 modification and DNA cleavage in CSR. Since Spt4 is not involved in the DNA cleavage step, we suspected that Spt4 might be required for DNA repair in CSR. We examined whether Spt4 or Spt5 is essential in non-homologous end joining (NHEJ) and homologous recombination (HR) as CSR utilizes general repair pathways. Both Spt4 and Spt5 are required for NHEJ and HR as determined by assay systems using synthetic repair substrates that are actively transcribed even in the absence of Spt4 and Spt5. Taken together, Spt4 and Spt5 can function independently in multiple transcription-coupled steps of CSR
    • …
    corecore