425 research outputs found
Flux creep in Bi2Sr2CaCu2O8(sub +x) single crystals
The results of a magnetic study on a Bi2Sr2CaCu2O(8+x) single crystal are reported. Low field susceptibility (dc and ac), magnetization cycles and time dependent measurements were performed. With increasing the temperature the irreversible regime of the magnetization cycles is rapidly restricted to low fields, showing that the critical current J(sub c) becomes strongly field dependent well below T(sub c). At 2.4 K the critical current in zero field, determined from the remanent magnetization by using the Bean formula for the critical state, is J(sub c) = 2 10(exp 5) A/sq cm. The temperature dependence of J(sub c) is satisfactorily described by the phenomenological law J(sub c) = J(sub c) (0) (1 - T/T(sub c) (sup n), with n = 8. The time decay of the zero field cooled magnetization and of the remanent magnetization was studied at different temperatures for different magnetic fields. The time decay was found to be logarithmic in both cases, at least at low temperatures. At T = 4.2 K for a field of 10 kOe applied parallel to the c axis, the average pinning energy, determined by using the flux creep model, is U(sub o) = 0.010 eV
Janus kinase inhibitors: a new tool for the treatment of axial spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease involving the spine, peripheral joints, and entheses. This condition causes stiffness, pain, and significant limitation of movement. In recent years, several effective therapies have become available based on the use of biologics that selectively block cytokines involved in the pathogenesis of the disease, such as tumor necrosis factor-α (TNFα), interleukin (IL)-17, and IL-23. However, a significant number of patients show an inadequate response to treatment. Over 10 years ago, small synthetic molecules capable of blocking the activity of Janus kinases (JAK) were introduced in the therapy of rheumatoid arthritis. Subsequently, their indication extended to the treatment of other inflammatory rheumatic diseases. The purpose of this review is to discuss the efficacy and safety of these molecules in axSpA therapy
Advances in the pathogenesis and treatment of systemic lupus erythematosus
Systemic lupus erythematosus (SLE) is a genetically predisposed, female-predominant disease, characterized by multiple organ damage, that in its most severe forms can be life-threatening. The pathogenesis of SLE is complex and involves cells of both innate and adaptive immunity. The distinguishing feature of SLE is the production of autoantibodies, with the formation of immune complexes that precipitate at the vascular level, causing organ damage. Although progress in understanding the pathogenesis of SLE has been slower than in other rheumatic diseases, new knowledge has recently led to the development of effective targeted therapies, that hold out hope for personalized therapy. However, the new drugs available to date are still an adjunct to conventional therapy, which is known to be toxic in the short and long term. The purpose of this review is to summarize recent advances in understanding the pathogenesis of the disease and discuss the results obtained from the use of new targeted drugs, with a look at future therapies that may be used in the absence of the current standard of care or may even cure this serious systemic autoimmune disease
The Utilization of Data Analysis Techniques in Predicting Student Performance in Massive Open Online Courses (MOOCs)
The growth of the Internet has enabled the popularity of open online learning platforms to increase over the years. This has led to the inception of Massive Open Online Courses (MOOCs) that enrol, millions of people, from all over the world. Such courses operate under the concept of open learning, where content does not have to be delivered via standard mechanisms that institutions employ, such as physically attending lectures. Instead learning occurs online via recorded lecture material and online tasks. This shift has allowed more people to gain access to education, regardless of their learning background. However, despite these advancements in delivering education, completion rates for MOOCs are low. In order to investigate this issue, the paper explores the impact that technology has on open learning and identifies how data about student performance can be captured to predict trend so that at risk students can be identified before they drop-out. In achieving this, subjects surrounding student engagement and performance in MOOCs and data analysis techniques are explored to investigate how technology can be used to address this issue. The paper is then concluded with our approach of predicting behaviour and a case study of the eRegister system, which has been developed to capture and analyse data.
Keywords: Open Learning; Prediction; Data Mining; Educational Systems; Massive Open Online Course; Data Analysi
Excitation of the l=3 diocotron mode in a pure electron plasma by means of a rotating electric field
The l=3 diocotron mode in an electron plasma confined in a Malmberg–Penning trap has been resonantly excited by means of a rotating electric field applied on an azimuthally four-sectored electrode. The experimental observations are interpreted with a theory based on the linearization of the drift-Poisson equations and by means of two-dimensional particle-in-cell simulations. The experimental technique presented in this paper is able to selectively excite different diocotron perturbations and can be efficiently used for electron or positron plasma control and manipulation
Diocotron modulation in an electron plasma through continuous radio-frequency excitation
The application of a radio-frequency (RF) excitation to any electrode of a Penning-Malmberg trap may result in significant electron heating and ionization of the residual gas with the formation of a plasma column when the RF frequency is of the order or larger than the typical axial bounce frequencies of few-eV electrons. The use of a quadrupolar excitation can induce additional phenomena, like formation of dense, narrow-cross section columns which exhibit an m\u3b8 = 1 diocotron mode, i.e., a rotation of their center around the trap axis. A series of experiments is presented and discussed showing that the continuous application of such excitation causes a dramatic perturbation of the plasma equilibrium also involving continuous production and loss of particles in the trapping region. In particular, the growth of the first diocotron mode is suppressed even in the presence of ion resonance and resistive instability and the mode exhibits steady-state or underdamped amplitude and frequency modulations, typically in the Hertz range
Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel
A 3-dimensional time-domain simulation of X-ray produced by a laser wakefield accelerated electron beam was performed in order to know its properties like intensity, spectrum, divergence and coherence. Particular attention was paid to the coherence around the acceleration axis. The broad spectrum of betatron radiation (1–10 keV) leads to a short coherence length. Nevertheless we observe that under particular detection condition the spatial coherence has a characteristic enlargement. We give a simplified interpretation of this effect in terms of phase shift of the electric field on a virtual detector. Moreover we describe a near field scattering technique to characterize the betatron radiation. This diagnostics will be used to map the transverse spatio-temporal coherence of X-ray radiation in the laser wakefield accelerator under development at Frascati National Laboratories (LNF)
About Distress in Chronic Pain Conditions: A Pre–Post Study on the Effectiveness of a Mindfulness-Based Intervention for Fibromyalgia and Low Back Pain Patients
Chronic pain (CP) affects about 30% of the global population and poses significant challenges to individuals and healthcare systems worldwide. The interactions between physiological, psychological, and social factors are crucial in the onset and development of CP conditions. This study aimed to evaluate the effectiveness of mindfulness-based intervention, examining its impact on perceived stress (PSS), depression and anxiety (BDI-II, PGWBI/DEP, SAS, STAI Y), sleep quality (PSQI), and mindfulness abilities (MAAS) in individuals with CP. Participants (N = 89, 84.3% female) underwent one of two diagnoses [fibromyalgia (FM) or low back pain (LBP)] and took part in an MBSR intervention. The mindfulness program proved effective in reducing PSQI scores (F = 11.97; p < 0.01) over time, independently of the type of diagnosis. There was also a marginal increase in trait mindfulness as measured by MAAS (F = 3.25; p = 0.07) in both groups. A significant difference between the two groups was found for the effect on PSS: F (1,87) = 6.46; p < 0.05. Mindfulness practice also reduced anxiety in FM and depressive symptoms in LBP, indicating a reduction in psychological distress among participants. Our findings suggest that mindfulness-based interventions may offer promising avenues for personalized pain management in clinical settings
Excitation of the l=2 diocotron mode with a resistive load
The resistive wall instability of the l=2 diocotron mode in a pure electron plasma has been investigated with a systematic variation of the parameters of the external impedance connected to a pair of sectored electrodes. The measured growth rate is well described by a linear perturbation theory of the two-dimensional drift-Poisson system
ERAP1 and ERAP2 Haplotypes Influence Suboptimal HLA-B*27:05-Restricted Anti-Viral CD8+ T Cell Responses Cross-Reactive to Self-Epitopes
The human leukocyte antigen (HLA)-B*27 family of alleles is strongly associated with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial and peripheral joints, yet some HLA-B*27 variants not associated with AS have been shown. Since no major differences in the ligandome of associated compared to not-associated alleles have emerged, a plausible hypothesis is that the quantity rather than the quality of the presented epitopes makes the difference. In addition, the Endoplasmic Reticulum AminoPeptidases (ERAPs) 1 and 2, playing a crucial role in shaping the HLA class I epitopes, act as strong AS susceptibility factors, suggesting that an altered peptidome might be responsible for the activation of pathogenic CD8+ T cells. In this context, we have previously singled out a B*27:05-restricted CD8+ T cell response against pEBNA3A (RPPIFIRRL), an EBV peptide lacking the B*27 classic binding motif. Here, we show that a specific ERAP1/2 haplotype negatively correlates with such response in B*27:05 subjects. Moreover, we prove that the B*27:05 allele successfully presents peptides with the same suboptimal N-terminal RP motif, including the self-peptide, pDYNEIN (RPPIFGDFL). Overall, this study underscores the cooperation between the HLA-B*27 and ERAP1/2 allelic variants in defining CD8+ T cell reactivity to suboptimal viral and self-B*27 peptides and prompts further investigation of the B*27:05 peptidome composition
- …
