2,579 research outputs found

    Crack detection in a rotating shaft using artificial neural networks and PSD characterisation

    Get PDF
    Peer reviewedPostprin

    A Multi-Moded RF Delay Line Distribution System for the Next Linear Collider

    Full text link
    The Delay Line Distribution System (DLDS) is an alternative to conventional pulse compression, which enhances the peak power of rf sources while matching the long pulse of those sources to the shorter filling time of accelerator structures. We present an implementation of this scheme that combines pairs of parallel delay lines of the system into single lines. The power of several sources is combined into a single waveguide delay line using a multi-mode launcher. The output mode of the launcher is determined by the phase coding of the input signals. The combined power is extracted from the delay line using mode-selective extractors, each of which extracts a single mode. Hence, the phase coding of the sources controls the output port of the combined power. The power is then fed to the local accelerator structures. We present a detailed design of such a system, including several implementation methods for the launchers, extractors, and ancillary high power rf components. The system is designed so that it can handle the 600 MW peak power required by the NLC design while maintaining high efficiency.Comment: 25 pages, 11 figure

    Cepheid limb darkening, angular diameter corrections, and projection factor from static spherical model stellar atmospheres

    Full text link
    Context. One challenge for measuring the Hubble constant using Classical Cepheids is the calibration of the Leavitt Law or period-luminosity relationship. The Baade-Wesselink method for distance determination to Cepheids relies on the ratio of the measured radial velocity and pulsation velocity, the so-called projection factor and the ability to measure the stellar angular diameters. Aims. We use spherically-symmetric model stellar atmospheres to explore the dependence of the p-factor and angular diameter corrections as a function of pulsation period. Methods. Intensity profiles are computed from a grid of plane-parallel and spherically-symmetric model stellar atmospheres using the SAtlas code. Projection factors and angular diameter corrections are determined from these intensity profiles and compared to previous results. Results. Our predicted geometric period-projection factor relation including previously published state-of-the-art hydrodynamical predictions is not with recent observational constraints. We suggest a number of potential resolutions to this discrepancy. The model atmosphere geometry also affects predictions for angular diameter corrections used to interpret interferometric observations, suggesting corrections used in the past underestimated Cepheid angular diameters by 3 - 5%. Conclusions. While spherically-symmetric hydrostatic model atmospheres cannot resolve differences between projection factors from theory and observations, they do help constrain underlying physics that must be included, including chromospheres and mass loss. The models also predict more physically-based limb-darkening corrections for interferometric observations.Comment: 8 pages, 6 figures, 2 tables, accepted for publication in A&

    Understanding complex magnetic order in disordered cobalt hydroxides through analysis of the local structure

    Full text link
    In many ostensibly crystalline materials, unit-cell-based descriptions do not always capture the complete physics of the system due to disruption in long-range order. In the series of cobalt hydroxides studied here, Co(OH)2−x_{2-x}(Cl)x_x(H2_2O)n_{n}, magnetic Bragg diffraction reveals a fully compensated N\'eel state, yet the materials show significant and open magnetization loops. A detailed analysis of the local structure defines the aperiodic arrangement of cobalt coordination polyhedra. Representation of the structure as a combination of distinct polyhedral motifs explains the existence of locally uncompensated moments and provides a quantitative agreement with bulk magnetic measurements and magnetic Bragg diffraction

    The long-period Galactic Cepheid RS Puppis - II. 3D structure and mass of the nebula from VLT/FORS polarimetry

    Full text link
    The long-period Cepheid RS Pup is surrounded by a large dusty nebula reflecting the light from the central star. Due to the changing luminosity of the central source, light echoes propagate into the nebula. This remarkable phenomenon was the subject of Paper I.The origin and physical properties of the nebula are however uncertain: it may have been created through mass loss from the star itself, or it could be the remnant of a pre-existing interstellar cloud. Our goal is to determine the 3D structure of the nebula, and estimate its mass. Knowing the geometrical shape of the nebula will also allow us to retrieve the distance of RS Pup in an unambiguous manner using a model of its light echoes (in a forthcoming work). The scattering angle of the Cepheid light in the circumstellar nebula can be recovered from its degree of linear polarization. We thus observed the nebula surrounding RS Pup using the polarimetric imaging mode of the VLT/FORS instrument, and obtained a map of the degree and position angle of linear polarization. From our FORS observations, we derive a 3D map of the distribution of the dust, whose overall geometry is an irregular and thin layer. The nebula does not present a well-defined symmetry. Using a simple model, we derive a total dust mass of M(dust) = 2.9 +/- 0.9 Msun for the dust within 1.8 arcmin of the Cepheid. This translates into a total mass of M(gas+dust) = 290 +/- 120 Msun, assuming a dust-to-gas ratio of 1.0 +/- 0.3 %. The high mass of the dusty nebula excludes that it was created by mass-loss from the star. However, the thinness nebula is an indication that the Cepheid participated to its shaping, e.g. through its radiation pressure or stellar wind. RS Pup therefore appears as a regular long-period Cepheid located in an exceptionally dense interstellar environment.Comment: 14 pages, 21 figures. Accepted for publication in A&

    HASH(0x563d44119a80)

    Get PDF
    HASH(0x563d43e27db0)HASH(0x563d44003f78

    Liquid Xenon Detectors for Positron Emission Tomography

    Full text link
    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of <10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution <1 mm (FWHM).Comment: Paper presented at the International Nuclear Physics Conference, Vancouver, Canada, 201
    • 

    corecore