The Delay Line Distribution System (DLDS) is an alternative to conventional
pulse compression, which enhances the peak power of rf sources while matching
the long pulse of those sources to the shorter filling time of accelerator
structures. We present an implementation of this scheme that combines pairs of
parallel delay lines of the system into single lines. The power of several
sources is combined into a single waveguide delay line using a multi-mode
launcher. The output mode of the launcher is determined by the phase coding of
the input signals. The combined power is extracted from the delay line using
mode-selective extractors, each of which extracts a single mode. Hence, the
phase coding of the sources controls the output port of the combined power. The
power is then fed to the local accelerator structures. We present a detailed
design of such a system, including several implementation methods for the
launchers, extractors, and ancillary high power rf components. The system is
designed so that it can handle the 600 MW peak power required by the NLC design
while maintaining high efficiency.Comment: 25 pages, 11 figure