1,875 research outputs found

    The Golden Channel at a Neutrino Factory revisited: improved sensitivities from a Magnetised Iron Neutrino Detector

    Get PDF
    This paper describes the performance and sensitivity to neutrino mixing parameters of a Magnetised Iron Neutrino Detector (MIND) at a Neutrino Factory with a neutrino beam created from the decay of 10 GeV muons. Specifically, it is concerned with the ability of such a detector to detect muons of the opposite sign to those stored (wrong-sign muons) while suppressing contamination of the signal from the interactions of other neutrino species in the beam. A new more realistic simulation and analysis, which improves the efficiency of this detector at low energies, has been developed using the GENIE neutrino event generator and the GEANT4 simulation toolkit. Low energy neutrino events down to 1 GeV were selected, while reducing backgrounds to the 10−410^{-4} level. Signal efficiency plateaus of ~60% for νμ\nu_\mu and ~70% for νˉμ\bar{\nu}_\mu events were achieved starting at ~5 GeV. Contamination from the νμ→ντ\nu_\mu\rightarrow \nu_\tau oscillation channel was studied for the first time and was found to be at the level between 1% and 4%. Full response matrices are supplied for all the signal and background channels from 1 GeV to 10 GeV. The sensitivity of an experiment involving a MIND detector of 100 ktonnes at 2000 km from the Neutrino Factory is calculated for the case of sin⁡22θ13∼10−1\sin^2 2\theta_{13}\sim 10^{-1}. For this value of θ13\theta_{13}, the accuracy in the measurement of the CP violating phase is estimated to be ΔδCP∼3∘−5∘\Delta \delta_{CP}\sim 3^\circ - 5^\circ, depending on the value of δCP\delta_{CP}, the CP coverage at 5σ5\sigma is 85% and the mass hierarchy would be determined with better than 5σ5\sigma level for all values of δCP\delta_{CP}

    Toroidal magnetized iron neutrino detector for a neutrino factory

    Get PDF
    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this paper, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large θ13. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent δCP reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of δCP

    AnĂĄlisis estructural de edificios histĂłricos mediante modelos localizados de fisuraciĂłn

    Get PDF
    En este trabajo se plantea un objetivo principal: formular un modelo numérico capaz de estudiar el comportamiento estructural de edificios históricos de obra de fábrica. Para ello se estudian en primer lugar las características de este material, así como las particularidades que presentan las construcciones antiguas. Como referencia se toma la Catedral de Mallorca, de la que se dispone de información proveniente de una campaña de monitorización llevada a cabo recientemente, así como de diversos análisis estructurales elaborados por diferentes autores. &nbsp

    Antiphospholipid Syndrome Risk Evaluation

    Get PDF
    The antiphospholipid syndrome is an acquired autoimmune disorder produced by high titers of antiphospholipid antibodies that cause both arterial and veins thrombosis as well as pregnancy-related complications and morbidity, as clinical manifestations. This autoimmune hypercoagulable state, often associated with coronary artery disease and recurrent Acute Myocardium Infraction, has severe consequences for the patients, being one of the main causes of thrombotic disorders and death. Therefore, it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Despite the updated of the APS classification published as Sydney criteria, diagnosis of this syndrome remains challenging. Further research on clinically relevant antibodies and standardization of their quantification are required to improve clinical risk assessment in APS. This work will focus on the development of a diagnosis support system to antiphospholipid syndrome, built under a formal framework based on Logic Programming, in terms of its knowledge representation and reasoning procedures, complemented with an approach to computing grounded on Artificial Neural Networks. The proposed model allowed to improve the diagnosis, classifying properly the patients that really presented this pathology (sensitivity about 92%) as well as classifying the absence of APS (specificity ranging from 89% to 94%)

    Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes

    Full text link
    The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on the design of solid state baby MIND and TASD detector prototypes and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. The current proposal is submitted to be considered in light of the recently approved projects related to neutrino activities with the SPS in the North Area in the medium term 2015-2020

    Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions

    Get PDF
    Immunologically, active visceral leishmaniasis (VL) is characterised by profound immunosuppression, severe systemic inflammatory responses and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis, however, their role in human visceral leishmaniasis is poorly understood. In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase and elastase, all contained in neutrophils’ granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analysed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species and phagocytose bacterial particles, but not Leishmania parasites. Our results suggest that impaired effector functions, increased activation and immaturity of neutrophils play a key role in the pathogenesis of VL

    TNFa and IL-2 armed adenoviruses enable complete responses by anti-PD-1 checkpoint blockade

    Get PDF
    Releasing the patient's immune system against their own malignancy by the use of checkpoint inhibitors is delivering promising results. However, only a subset of patients currently benefit from them. One major limitation of these therapies relates to the inability of T cells to detect or penetrate into the tumor resulting in unresponsiveness to checkpoint inhibition. Virotherapy is an attractive tool for enabling checkpoint inhibitors as viruses are naturally recognized by innate defense elements which draws the attention of the immune system. Besides their intrinsic immune stimulating properties, the adenoviruses used here are armed to express tumor necrosis factor alpha (TNFa) and interleukin-2 (IL-2). These cytokines result in immunological danger signaling and multiple appealing T-cell effects, including trafficking, activation and propagation. When these viruses were injected into B16.OVA melanoma tumors in animals concomitantly receiving programmed cell-death protein 1 (PD-1) blocking antibodies both tumor growth control (p <0.0001) and overall survival (p <0.01) were improved. In this set-up, the addition of adoptive cell therapy with OT-I lymphocytes did not increase efficacy further. When virus injections were initiated before antibody treatment in a prime-boost approach, 100% of tumors regressed completely and all mice survived. Viral expression of IL2 and TNFa altered the cytokine balance in the tumor microenvironment towards Th1 and increased the intratumoral proportion of CD8+ and conventional CD4+ T cells. These preclinical studies provide the rationale and schedule for a clinical trial where oncolytic adenovirus coding for TNFa and IL-2 (TILT-123) is used in melanoma patients receiving an anti-PD-1 antibody.Peer reviewe

    Neutrino hierarchy from CP-blind observables with high density magnetized detectors

    Get PDF
    High density magnetized detectors are well suited to exploit the outstanding purity and intensities of novel neutrino sources like Neutrino Factories and Beta Beams. They can also provide independent measurements of leptonic mixing parameters through the observation of atmospheric muon-neutrinos. In this paper, we discuss the combination of these observables from a multi-kton iron detector and a high energy Beta Beam; in particular, we demonstrate that even with moderate detector granularities the neutrino mass hierarchy can be determined for θ13\theta_{13} values greater than 4∘^\circ.Comment: 16 pages, 7 figures. Added a new section discussing systematic errors (sec 5.2); sec.5.1 and 4 have been extended. Version to appear in EPJ

    Baby MIND: A magnetised spectrometer for the WAGASCI experiment

    Get PDF
    The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title + 4 pages, LaTeX, 6 figure
    • …
    corecore