1,663 research outputs found
Spontaneous self-ordered states of vortex-antivortex pairs in a Polariton Condensate
Polariton condensates have proved to be model systems to investigate
topological defects, as they allow for direct and non-destructive imaging of
the condensate complex order parameter. The fundamental topological excitations
of such systems are quantized vortices. In specific configurations, further
ordering can bring the formation of vortex lattices. In this work we
demonstrate the spontaneous formation of ordered vortical states, consisting in
geometrically self-arranged vortex-antivortex pairs. A mean-field generalized
Gross-Pitaevskii model reproduces and supports the physics of the observed
phenomenology
A comparative study in the development of the sensori-motor intelligence according to Jean Piaget and Arnold Gesell
The discovery of a proper topic for a thesis, as well as the organization of the material to be studied may be born of either a sudden insight into a problem left unsolved until now or may grow from a long familiarity with scientific facts, with the result that relationships and comparisons gradually emerge and impose themselves as a distinct object of investigation
Les prĆ©supposĆ©s d'une thĆ©orie de l'imitation dans l'art d'aprĆØs Platon
MontrƩal Trigonix inc. 201
Parkinsonās Disease in a Dish: What Patient Specific-Reprogrammed Somatic Cells Can Tell Us about Parkinsonās Disease, If Anything?
Technologies allowing for the derivation of patient-specific neurons from somatic cells are emerging as powerful in vitro tools to investigate the intrinsic cellular pathological behaviours of the diseases that affect these patients. While the use of patient-derived neurons to model Parkinson's disease (PD) has only just begun, these approaches have allowed us to begin investigating disease pathogenesis in a unique way. In this paper, we discuss the advances made in the field of cellular reprogramming to model PD and discuss the pros and cons associated with the use of such cells
Exploring the psychological rewards of a familiar semirural landscape: connecting to local nature through a mindful approach
This study analyses a 53,000 word diary of a year engaging with nature through over 200 trips to a semi-rural landscape. Thematic analysis revealed two themes; the transition from observer to nature connectedness and the ways in which the natural environment was experienced once a connection was made. These themes are discussed in relation to theories that seek to explain the positive effect of nature and nature connectedness. The findings are important as they suggest that repeated engagement with local semi-rural countryside can lead to a mindful approach and psychological rewards that do not require travel into the wilderness. The work informs further research into outcomes and processes of nature based interventions such as: trip frequency, duration and diary keeping
Controlling of Iridium films using interfacial proximity effects
High precision calorimetry using superconducting transition edge sensors
requires the use of superconducting films with a suitable , depending on
the application. To advance high-precision macrocalorimetry, we require
low- films that are easy to fabricate. A simple and effective way to
suppress of superconducting Iridium through the proximity effect is
demonstrated by using Ir/Pt bilayers as well as Au/Ir/Au trilayers. While Ir/Au
films fabricated by applying heat to the substrate during Ir deposition have
been used in the past for superconducting sensors, we present results of
suppression on Iridium by deposition at room temperature in Au/Ir/Au trilayers
and Ir/Pt bilayers in the range of 20-100~mK. Measurements of the
relative impedance between the Ir/Pt bilayers and Au/Ir/Au trilayers fabricated
show factor of 10 higher values in the Ir/Pt case. These new films could
play a key role in the development of scalable superconducting transition edge
sensors that require low- films to minimize heat capacity and maximize
energy resolution, while keeping high-yield fabrication methods.Comment: 5 journal pages, 4 figure
Early careers on ecohydraulics:Challenges, opportunities and future directions
Early career researchers (ECRs) play a critical role in our knowledge-based society, yet they are the most vulnerable group in the scientific community. As a young, interdisciplinary science, ecohydraulics is particularly reliant on ECRs for future progress. In 2014, the Early Careers on Ecohydraulics Network (ECoENet) was created to help the development of young researchers in this field. In this paper, we synthesize the outcomes of a workshop for ECRs organized by ECoENet in February 2016. We aim to show how the potential of ECRs can be maximized to drive progress in ecohydraulics. According to the most recent entrants to the field, major challenges lie in becoming more integrated as a discipline, developing a common vocabulary and a collective vision, engaging effectively with policy-makers, and encouraging public participation. ECRs need to develop their careers on an international scale in a way that crosses traditional disciplinary boundaries, including the social sciences, and allows them time to work at fundamental levels rather than focusing solely on individual applications. We propose a strategy to facilitate this by providing: a platform for disseminating research; an international support network; and a set of services for enhancing ECR training and experience. Early career researchers; interdisciplinary science; ecohydraulics; society; ecology; hydraulicsacceptedVersio
- ā¦