468 research outputs found

    Rancangan Mesin Pembelah Buah Pinang dengan Dua Mata Potong

    Full text link
    Betel nut palm plant is one of the many benefits and efficacy, especially seeds. Areca nuts are widely used as the main raw material in the process of making drugs, cosmetics, slimming, snacks, sweets, and coffee. Betel nut processing into betel nut is still constrained by the tool is still modest, are still using wood beams repose knife to split betel nut into two parts. To overcome these problems needed betel nut splitter machine with a capacity of 250 kg / h. This engine design is expected to help farmers during the process of betel nut processing into dried betel nut. The working principle of betel nut splitter machine originated from an electric motor that produces rotation is forwarded to the reducer and to the cutting blade associated with two gears. Betel nut is inserted through the insertion funnel towards the rotor has 4 channels / trench, and rotor spinning and crashing betel nut rotating blades reversed so the rotor besidesbetel nut split into two parts. Shaft rotation speed at the eye-piece and carrier rotor shaft is 9.32 rpm, the rotation speed is obtained from the ratio gearbox and pulley on the engine splitter ratio. With the machine is expected to help farmers to cultivate betel nut, so the work is lighter, faster and may prevent accidents. Shaft rotation speed at the eye-piece and carrier rotor shaft is 9.32 rpm, the rotation speed is obtained from the ratio gearbox and pulley on the engine splitter ratio. With the machine is expected to help farmers to cultivate betel nut, so the work is lighter, faster and may prevent accidents. Shaft rotation speed at the eye-piece and carrier rotor shaft is 9.32 rpm, the rotation speed is obtained from the ratio gearbox and pulley on the engine splitter ratio. With the machine is expected to help farmers to cultivate betel nut, so the work is lighter, faster and may prevent accidents

    Quasi-Phase Matched Surface Emitting Second Harmonic Generation In Poled Polymer Waveguides

    Get PDF
    Quasi-phase matched (QPM) surface emitting second harmonic generation was demonstrated with nonlinear/linear multilayer waveguides in poled polymer based devices. The nonlinear/linear multilayer film was fabricated with a 4-dimethylamino-4\u27-nitrostilbene (DANS) side chain polymer and a cross-linkable clear polymer. Large efficiency improvement was observed with a combination of QPM and strong field parallel poling

    3Rd-Order Nonlinearity Of 4-Dialkylamino-4\u27Nitro-Stilbene Wave-Guides At 1319 Nm

    Get PDF
    The intensity dependent optical properties of 4-dialkylamino-4\u27nitro-stilbene polymer channel waveguides were measured at 1319 nm with a pulse modulated Mach-Zehnder interferometer to be n2 = 0.8 x 10(-13) cm2/W and beta2 \u3c 0.08 cm/GW. This material is promising for all-optical switching at 1319 nm because it satisfies both the W and T figures of merit

    Face Coverings and Respiratory Tract Droplet Dispersion

    Get PDF
    Abstract Respiratory droplets are the primary transmission route for SARS-CoV-2, a principle which drives social distancing guidelines. Evidence suggests that virus transmission can be reduced by face coverings, but robust evidence for how mask usage might affect safe distancing parameters is lacking. Accordingly, we set out to quantify the effects of face coverings on respiratory tract droplet deposition. We tested an anatomically realistic manikin head which ejected fluorescent droplets of water and human volunteers, in speaking and coughing conditions without a face covering, or with a surgical mask or a single-layer cotton face covering. We quantified the number of droplets in flight using laser sheet illumination and UV-light for those that had landed at table height at up to 2 m. For human volunteers, expiratory droplets were caught on a microscope slide 5 cm from the mouth. Whether manikin or human, wearing a face covering decreased the number of projected droplets by less than 1000-fold. We estimated that a person standing 2 m from someone coughing without a mask is exposed to over 10 000 times more respiratory droplets than from someone standing 0.5 m away wearing a basic single-layer mask. Our results indicate that face coverings show consistent efficacy at blocking respiratory droplets and thus provide an opportunity to moderate social distancing policies. However, the methodologies we employed mostly detect larger (non-aerosol) sized droplets. If the aerosol transmission is later determined to be a significant driver of infection, then our findings may overestimate the effectiveness of face coverings

    Crystal Structure of the Formin mDia1 in Autoinhibited Conformation

    Get PDF
    Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID).Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state.Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition

    Alu-Alu Recombination Underlying the First Large Genomic Deletion in GlcNAc-Phosphotransferase Alpha/Beta (GNPTAB) Gene in a MLII Alpha/Beta Patient

    Get PDF
    Mucolipidosis type II α/β is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the α/β subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII α/β patients, but no large deletions have been reported. Here we present the first case of a large homozygous intragenic GNPTAB gene deletion (c.3435-386_3602 + 343del897) encompassing exon 19, identified in a ML II α/β patient. Long-range PCR and sequencing methodologies were used to refine the characterization of this rearrangement, leading to the identification of a 21 bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5' and 3' breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19 (p.Lys1146_Trp1201del); another with an additional loss of exon 20 (p.Arg1145Serfs*2), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18.This represents the first description of a large deletion identified in the GNPTAB gene and contributes to enrich the knowledge on the molecular mechanisms underlying causative mutations in ML II.This work was supported by FCT - project PIC/IC/83252/2007 (http://alfa.fct.mctes.pt/). Coutinho MF and Quental S received grants from the FCT (SFRH/BD/48103/2008; SFRH/BPD/64025/2009)

    2Nd-Harmonic Generation By Counter Propagating Beams In 4-Dimethylamino-4\u27-Nitrostilbene Side-Chain Polymer Channel Wave-Guides

    Get PDF
    We demonstrate surface emitted second harmonic generation due to mixing of counter propagating waves in in-plane poled, low loss, channel waveguides of 4-dimethylamino-4\u27-nitrostilbene (DANS) side-chain polymers. Single film DANS side-chain polymer waveguides yield high conversion efficiency devices

    Challenges facing an understanding of the nature of low-energy excited states in photosynthesis

    Full text link
    © 2016 Elsevier B.V. While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding

    Genetic approaches to understanding the causes of stuttering

    Get PDF
    Stuttering is a common but poorly understood speech disorder. Evidence accumulated over the past several decades has indicated that genetic factors are involved, and genetic linkage studies have begun to identify specific chromosomal loci at which causative genes are likely to reside. A detailed investigation of one such region on chromosome 12 has identified mutations in the GNPTAB gene that are associated with stuttering in large families and in the general population. Subsequent studies identified mutations in the functionally related GNPTG and NAGPA genes. Mutations in these genes disrupt the lysosomal targeting pathway that generates the Mannose 6-phosphate signal, which directs a diverse group of enzymes to their target location in the lysosome of the cell. While mutations in these three genes can be identified in less than 10% of cases of familial stuttering, this knowledge allows a variety of new studies that can help identify the neuropathology that underlies this disorder
    • …
    corecore