5,165 research outputs found

    Influence of Mg, Ag and Al substitutions on the magnetic excitations in the triangular-lattice antiferromagnet CuCrO2

    Full text link
    Magnetic excitations in CuCrO2_{2}, CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2}, Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2}, and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} have been studied by powder inelastic neutron scattering to elucidate the element substitution effects on the spin dynamics in the Heisenberg triangular-lattice antiferromagnet CuCrO2_{2}. The magnetic excitations in CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2} consist of a dispersive component and a flat component. Though this feature is apparently similar to CuCrO2_{2}, the energy structure of the excitation spectrum shows some difference from that in CuCrO2_{2}. On the other hand, in Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2} and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} the flat components are much reduced, the low-energy parts of the excitation spectra become intense, and additional low-energy diffusive spin fluctuations are induced. We argued the origins of these changes in the magnetic excitations are ascribed to effects of the doped holes or change of the dimensionality in the magnetic correlations.Comment: 7 pages, 5 figure

    Optimum design of magnetic field environment for axonal growth control in nerve cell regeneration process using electromagnetic field analyses

    Get PDF
    In this study, an optimum magnetic field environment for the nerve axonal extension and control of axonal growth direction in the nerve cell generation process was searched by using electromagnetic finite element analyses. Recently, the developments of 3D-scaffold structures employing biodegradable polymers have been an attracting attention for the clinical treatments of damaged nerve tissues. The magnetic stimulation is introduced to accelerate the regeneration speed of nerve axon inside the 3D-scaffold. According to experimental observation of Blackman, C.F. and his research group (1993) [1], it was found that 50 Hz AC magnetic field has promoted the regeneration of axonal extension in the case of pheochromocytoma cells (PC12). They identified the optimum configuration of the coil and the threshold value of driving current for the initiation of PC12 axon growth. However, they did not evaluate analytically the magnetic flux density and the magnetic field in the cell culture liquid for the PC12 axon growth initiation. Therefore, at first we employed the electromagnetic finite element analyses (FEA) to evaluate the magnetic flux density in the case of Blackman’s experiment. Simultaneously, we identified the relative magnetic permeability of Dulbecco’s Modified Eagle Medium (DMEM) as 1.01 at 50 Hz. Finally, we obtained the value of magnetic flux density inside DMEM as 4.2 T. Next, we try to design the configuration of Helmholtz coil, which can generate an optimum magnetic field to stimulate most effectively for PC12 axon extension. It is confirmed that the magnetic field gradient affect the extensional speed of PC12 axon, which can be achieved by setup the one peripheral coil and two coils at the center. We found an optimum configuration of Helmholtz coil to generate the magnetic field environment and fabricate an experimental bioreactor for PC12 cell culture. We examined the effectiveness of magnetic stimulation for PC12 nerve axon’s extension quantitatively. Further, we try to find the relationship between the magnetic field gradient and the direction of nerve axon’s extension

    D-branes as a Bubbling Calabi-Yau

    Full text link
    We prove that the open topological string partition function on a D-brane configuration in a Calabi-Yau manifold X takes the form of a closed topological string partition function on a different Calabi-Yau manifold X_b. This identification shows that the physics of D-branes in an arbitrary background X of topological string theory can be described either by open+closed string theory in X or by closed string theory in X_b. The physical interpretation of the ''bubbling'' Calabi-Yau X_b is as the space obtained by letting the D-branes in X undergo a geometric transition. This implies, in particular, that the partition function of closed topological string theory on certain bubbling Calabi-Yau manifolds are invariants of knots in the three-sphere.Comment: 32 pages; v.2 reference adde

    Large N Duality, Lens Spaces and the Chern-Simons Matrix Model

    Get PDF
    We demonsrate that the spectral curve of the matrix model for Chern-Simons theory on the Lens space S^{3}/\ZZ_p is precisely the Riemann surface which appears in the mirror to the blownup, orbifolded conifold. This provides the first check of the AA-model large NN duality for T^{*}(S^{3}/\ZZ_p), p>2.Comment: 12 pages, 2 figure

    Bubbling Calabi-Yau geometry from matrix models

    Full text link
    We study bubbling geometry in topological string theory. Specifically, we analyse Chern-Simons theory on both the 3-sphere and lens spaces in the presence of a Wilson loop insertion of an arbitrary representation. For each of these three manifolds we formulate a multi-matrix model whose partition function is the vev of the Wilson loop and compute the spectral curve. This spectral curve is the reduction to two dimensions of the mirror to a Calabi-Yau threefold which is the gravitational dual of the Wilson loop insertion. For lens spaces the dual geometries are new. We comment on a similar matrix model which appears in the context of Wilson loops in AdS/CFT.Comment: 30 pages; v.2 reference added, minor correction

    Formation of superfluid liquid pocket in aerogel and its solidification by cooling

    No full text
    Formation of superfluid liquid pockets of ⁴He surrounded by ⁴He crystals were observed in an aerogel of 96% porosity. The liquid pockets did not crystallize by application of pressure but crystallized via avalanche by cool-ing below a particular temperature. The crystallization by cooling was also observed when crystals occupied a smaller portion of the aerogel. Driving force for the crystallization by cooling and possible mass transport process are discussed

    High Dynamic Range Image Watermarking Robust Against Tone-Mapping Operators

    Get PDF
    High dynamic range (HDR) images represent the future format for digital images since they allow accurate rendering of a wider range of luminance values. However, today special types of preprocessing, collectively known as tone-mapping (TM) operators, are needed to adapt HDR images to currently existing displays. Tone-mapped images, although of reduced dynamic range, have nonetheless high quality and hence retain some commercial value. In this paper, we propose a solution to the problem of HDR image watermarking, e.g., for copyright embedding, that should survive TM. Therefore, the requirements imposed on the watermark encompass imperceptibility, a certain degree of security, and robustness to TM operators. The proposed watermarking system belongs to the blind, detectable category; it is based on the quantization index modulation (QIM) paradigm and employs higher order statistics as a feature. Experimental analysis shows positive results and demonstrates the system effectiveness with current state-of-art TM algorithms
    corecore