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High Dynamic Range Image Watermarking

Robust Against Tone-Mapping Operators
Abstract

High Dynamic Range (HDR) images represent the future format for digital images since they allow to

accurately render a wider range of luminance values. However, nowadays special types of pre-processing

collectively known as tone-mapping (TM) operators are needed to adapt HDR images to currently existing

displays. Tone-mapped images, although of reduced dynamic range, have nonetheless high quality and

hence retain some commercial value. In this paper we propose a solution to the problem of HDR

image watermarking, e.g., for copyright embedding, that should survive tone-mapping. Therefore, the

requirements imposed on the watermark encompass imperceptibility, a certain degree of security and

robustness to tone-mapping operators. The proposed watermarking system belongs to the blind, detectable

category, it is based on the QIM paradigm and employs a higher order statistics as feature. Experimental

analysis shows positive results and demonstrates the system effectiveness with current state-of-art TM

algorithms.

EDICS: WAT-BINM, WAT-OTHA

I. INTRODUCTION

High Dynamic Range (HDR) images represent the radiance of scenes captured by a device or generated

by an artificial rendering system. Due to the wide dynamics of visible luminance, their pixels usually take

floating point values and thus HDR images cannot be directly rendered by present-day displays. In fact,

the original values must be adapted in order to fit the dynamic and color gamut of the target device. This

adaptation, which transforms a “scene referred” image into an “output referred” one, can be obtained by

applying a so called tone-mapping (TM) process. Tone-mapping techniques are all non-linear in nature

and could vary depending on the algorithm: their complexity can range from something as simple as

some kind of global transformation (e.g. clipping followed by histogram equalization) to more complex

non-linear local processing.

Tone-mapped images keep some commercial and intellectual value because of their high visual quality

despite their limited dynamic range and hence they are possible targets for misappropriation or misuse by

malevolent entities. This is an unavoidable problem which will have to be faced as soon as HDR images

and their tone-mapped versions reach widespread diffusion - and they certainly will in the near future.
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A possible solution is represented by data hiding techniques, such as digital watermarking [1] [2], which

try to embed into any given HDR image some kind of information that should have to stay therein even

after a tone-mapping processing. To the authors’ knowledge, no major work concerning the problem of

HDR image watermarking robust to tone-mapping has been widely studied yet.

In this paper, we therefore propose to embed a watermark to enforce or simply communicate property

rights of a given HDR image to any potential user. The watermark needs only to survive to those

processing that preserve perceptual value, as in the case of TM operators, while as soon as the tone-

mapped image loses its high quality, due to some other kind of manipulation, its commercial value

is greatly diminished and therefore watermark loss could be afforded. This obviously implies that the

watermark must be highly imperceptible. Depending on the application framework, the watermarking

system could be either blind or non-blind, according to the availability of the original image during

the watermark recovery; here we conduct a preliminary analysis by embedding a detectable (i.e. only

the watermark presence must be assessed, but the watermark by itself bears no information), blindly

recoverable, imperceptible watermark robust to non-linear value-metric attacks, using an improved version

of the algorithm presented in [3]. The latter was originally proposed for 8 bpp grayscale images; however

its structure and the particular nature of the problem at hand makes it suitable for its adaptation to the

HDRI context too.

The remainder of the paper is organized as follows. In Section II, the system framework is proposed;

in particular, the description of several overall design considerations constitutes the focus of this Section.

In Section III a thorough, step-by-step description of the watermarking system is reported, highlighting

how it fulfills the requirements in the HDR context. Then, Section IV shows some experimental results

for a varied set of HDR images, both in terms of detection performances and imperceptibility. Finally,

Section V draws some conclusive remarks.

II. SYSTEM FRAMEWORK

For watermarking purposes, it is reasonable to work in the luminance domain since tone-mapping is likely

to strongly tamper with the chrominance components in an unpredictable way (e.g., not monotonically).

Therefore, the first step of our system must be luminance component extraction from the HDR image.

It will carry the watermark, while chrominance components will be left untouched. This consideration is

also compatible with the pre-existent LDR image watermarking system; for the sake of this Section, let

us assume that we have at our disposal a reliable watermarking system, imperceptible and robust to both

linear and non-linear pixel value-metric attacks, to use as a block box. The discussion on the watermarking
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Figure 1: Sketch of HDR watermarking possible methods.

system is postponed to Section III. Figure 1 schematically shows how the watermarking system could be

conceived. The most straightforward approach, depicted in Figure 1a, would be to watermark directly the

HDR original image IHDR, assuming the watermarking algorithm could be somehow ported in the HDR

domain, and then hope that the watermark embedded in the resulting IHDR
W survives any subsequent

TM process, denoted by TM i. However, estimating the perceptual impact that the watermark is going to

produce on the tone-mapped versions of the image is very difficult. Conservative approaches would surely

imply that the watermark would not survive the TM process. Moreover, the watermarking algorithm may

not be ported in the HDR domain without losing its nice robustness properties.

The solution adopted here is instead illustrated by Figure 1b. In [4] the LogLuv color space is shown;

the log transform applied to the luminance guarantees that distortions of the same magnitude on different

starting log-luminance values will be perceived approximately in the same way. In fact, in [5] it is argued

that any generic tone-mapping method will replicate the Weber Fechner law which makes a luminance

log transform an essential component of a TM process. Therefore, the transformation RGB-to-LogL,

abbreviated in Figure 1b by L, leads to a reasonable domain in which to perform robust watermark

embedding. Since the inverse log transform (or L−1) is readily available, it allows to obtain back in a

simple way the HDR watermarked image.

Hence, our proposed system works as follows. Initially, the original HDR image IHDR is transformed to

a reference image ILL by applying RGB-to-LogL transformation as described in [4]. The log-luminance

values range is set to [0, 255] as for 8 bpp LDR images. Then, the algorithm embeds the watermark

in ILL, obtaining ILLW . Lastly, the reverse log transform is applied obtaining the watermarked version



4

of the given original HDR image. When a generic tone-mapping TM i is applied to the watermarked

HDR image IHDR
W , the watermark is still present as long as the assumption of similarity between

the log transform and tone-mapping operators in the luminance component holds, that is it is assumed

that ITM i
W can be obtained from ILL

W through a mild non-linear transformation against which the

watermarking process is robust. The effectiveness of this approach will be demonstrated in Section IV.

III. WATERMARKING SYSTEM

Digital watermarking systems comprise several possible frameworks. In particular, still image water-

marking is a huge field, with a plethora of solutions proposed for a variety of different applications.

The selection of the particular technique needed in a watermarking system is strongly dependent on its

requirements, which in turn depend on the intended application. The main requirements of a watermarking

system are robustness, security, capacity and imperceptibility. Robustness is the ability of the watermark

to resist to non-malicious content manipulations, such as compression, editing, etc. Such manipulations

are likely to occur during the normal lifetime of the watermarked object. On the other hand, security

is concerned with intelligent attackers interested in removing or disabling the watermark by exploiting

possible weaknesses in the watermarking system; in particular, an attacker could also take advantage of

poor robustness against a particular transformation. Security usually requires that the system relies on

some secret key shared between the embedder and the recovery entities as seen in private cryptography.

Capacity refers to the quantity of information conveyed by the watermark itself; when this quantity

is only 1 bit, that is to say we are only interested in assessing whether the watermark is present in

a given image, the watermark is called detectable, otherwise it is called decodable or multi-bit. Last,

imperceptibility refers to the obvious fact that the watermark embedding should not alter the perceptual

quality of the original content. Another important classification in watermarking is between the blind

and the non-blind watermark recovery, in which the latter process needs the original (unwatermarked)

data to be performed whereas the former does not. All these requirements, plus a number of marginal

others such as computational complexity of either the embedder or the recovery block or both, blend in

different ways to form a watermarking system suitable for an application at hand.

The watermarking technique that is at the core of the proposed HDR image watermarking is explained

in [6] and [3]. To summarize, the system proposed in this work is based on the QIM paradigm [7] and

is designed to embed a blindly detectable one bit watermark in HDR images. The watermark must be

specifically robust against TM operators (as well as against some other common image processing) that

are thoroughly described in Section IV. Watermark security is guaranteed by a number of randomization
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steps in the embedding process. Last, high-quality imperceptibility is an imperative requirement, pursued

by employing a powerful perceptual mask during the watermark embedding process.

This Section first points out in Subsection III-A the requirements we have imposed on the HDR image

watermarking system proposed in this work. Then, the system structure we have implemented to achieve

them is described in the following Subsections. The feature selected as the watermark medium is the

kurtosis of the approximation subband wavelet coefficients extracted in N blocks, and bit repetition coding

is employed by embedding the same bit in every block. The feature extraction process is described in

Subsection III-B. The perceptual mask necessary to guarantee that the imperceptibility requirement is

met is illustrated in Subsection III-C. Finally, the watermark embedding and the recovery procedures are

explained in Subsection III-D. The watermark embedder and detector respective flowcharts are shown in

Figures 2 and 3; they are described in turn in what follows.

A. Watermarking Requirements

In our case, the main requirement which is imposed on the detectable watermarking system is imper-

ceptibility, since there is strong interest in retaining the high perceptual quality of the original HDR

image. The other important requirement is robustness against any TM operator which could be applied

to the original HDR image. This means that after the watermark has been embedded in the original HDR

image, all of its tone-mapped versions should also contain the watermark, regardless of the particular TM
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algorithm used as long as the quality has been preserved to a sufficient extent. As already mentioned,

there exist several tone-mapping algorithms, so that tailoring the approach to every one is impracticable.

However, it can be easily assumed that all tone-mapped versions of a given HDR image are perceptually

similar. In fact, in [5] it is argued that all tone-mapping operators could be described by a single model

with an appropriate fitting of some model parameters.

All tone-mapped versions of a given HDR image can be derived one from the other by means of a global

linear transformation (e.g., a brightness adjustment) followed by some mild non-linear transformation.

So, the original requirement of robustness against TM operators translates into robustness against this

mix of linear and mild non-linear transformations. If this condition is verified we will show that when a

particular TM image has been watermarked, the other TM versions will also contain the watermark. The

watermarking system proposed in [6] is robust against pixel value-metric non-linear attacks. It is also

invariant against linear value-metric scaling and thus it is well suited for the problem at hand. However,

it needs some adjustments since it was originally proposed for LDR image watermarking. We choose to

embed a detectable watermark, which means that its capacity is single bit. Security can be achieved by

suitable randomization of the embedding algorithm steps (see K in Figures 2 and 3) thanks to the use of

a secret key. Imperceptibility it is also a concern for the LDR domain; even if imperceptible changes on

the TM images are likely to introduce significant distortion in the HDR domain because of the reverse

log, this fact can be ignored by recognizing that TM operators will mimic the response of the HVS to

real light stimulus, the same that is contained in a HDR image. Thus, when a HDR image is rendered on

a normal display, the tone mapping reduces contrast in the same way the HVS would normalize the input

stimulus. On a lower dynamic range display, the effect would be even stronger so that the watermark

induced distortion in the HDR domain can be masked provided that imperceptibility in the LDR domain

is achieved.

B. Feature Extraction

This Subsection explains the feature extraction process, which is a necessary step for both the watermark

embedder and the detector. The input of the embedder is assumed to be the reference log-luminance image

I . The first step of the feature extraction process is to apply a wavelet transform on the host image I . We

use the orthogonal, 2-level Daubechies DWT, with 8 tap filter impulse responce. This DWT, aside from

guaranteeing perfect reconstruction, has the additional advantage of providing a sparser representation,

given by the high number of vanishing moments on the analysis filters, which in turn has benefits in the

embedding process (see below).
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Robustness and imperceptibility are by their nature conflicting requirements and a suitable tradeoff has

to be reached in the watermarking system design. This tradeoff is evident even in the feature domain

selection. In our case, the feature is extracted from the approximation subband, abbreviated with AS

in Figure 2. It represent the actual watermark domain. The 6 detail subbands, at all levels, are left

untouched and are collectively indicated by DS. Any small change, including watermark embedding,

applied to the deep-level detail subbands (the “high-frequency” part of the wavelet decomposition, that

in our case are the LLHL, LLLH, and LLHH subbands), may be imperceptible; however, these subbands

have poor robustness properties since their content is easily destroyed by the TM transformations with

virtually no visual implication. On the other hand, the AS of a 2-level wavelet decomposition is a low-

pass filtered version of the host image, therefore there is more correlation between the AS coefficients

than in the pixels of the original image so that robustness is inherently higher in this subband. Using

more decomposition levels increases the coefficients correlation and thus their robustness; however, this

has also detrimental effects on the block size and their number (which affects the the block selection

process). We observed that using 2 levels of decomposition is a good tradeoff between AS subband

robustness properties and block parameters selection. The AS accounts for the most perceptible part

of the image data, hence achieving imperceptibility using this subband as the watermark domain is

challenging; however, to obtain the desired level of robustness it is mandatory to embed the watermark

in the AS domain. Imperceptibility must therefore be granted by adopting a complex perceptual mask

(see Subsection III-C) and by carefully tuning the system parameters.

Now, a N -length feature vector k is to be obtained by evaluating the kurtosis of the AS coefficients

contained in N blocks; let us defer the description of the blocks selection process and first discuss about

the properties of the kurtosis feature. Let xi, 1 ≤ i ≤ N be the coefficients vectors (the scan order is

without particular significance) forming a block.

The sample kurtosis of an input coefficient vector of length L (indicating its j-th component as x(j)
i ),

with sample mean xi is defined as:

k(xi) =
L ·∑L

j=1

(
x

(j)
i − xi

)4

(∑L
j=1

(
x

(j)
i − xi

)2
)2 (1)

which is a biased estimator of the statistical kurtosis β2 of a probability density function (pdf), defined

as:

β2 =
µ4

σ4
=

µ4

µ2
2

(2)
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where, µ represent the pdf mean, µi = E[(X−µ)i] represents the i-th order central statistical moment and

σ is the standard deviation. Therefore, the kurtosis β2 is the fourth-order, central, normalized statistical

moment. In informal terms, the kurtosis measures the “peakedness” of the distribution around its mean

and how much the pdf tails are “fat”. For instance, normal pdfs have β2 = 3, uniform distributions have

β2 = 1.8, Laplacian distributions have β2 = 6 and p-Bernoulli distributions have β2 = 1
p + 1

1−p − 3 (for

p = 0.5 we have the unique minimum for the kurtosis, β2 = 1 and so β2 ≥ 1). The precision of the chosen

k is adequate, since we are not trying to infer any underlying statistical property of the coefficients in xi

but we are instead interested in affirming that the feature is somewhat tied to the local perceptual content

of the image, since it describes to some extent the shape of the local wavelet coefficients distribution in

a compact way.

The sample kurtosis k(x) of a vector x is invariant to affine transformations of the kind px+ q (where

both product and sum are component-wise), that is k(x) = k(px+ q), ∀ p, q ∈ <; the proof is immediate

from inspection of Equation 1. So, the kurtosis feature is invariant to any CGA (constant gain attacks)

applied to the image, since they are linearly propagated to the AS coefficients by the wavelet filters. In

addition, experiments showed the robustness of the kurtosis feature; in particular, the relative variation

experienced by this feature after the image from which it was extracted has been attacked is with high

probability in the order of 10% of the original feature value.

Once we have defined the feature, we discuss the blocks extraction process. The block size is a key

factor for the robustness properties of the kurtosis feature. Blocks that are too small fail to capture

any perceptual content because of their excessive localization; moreover, and even more importantly,

robustness is seriously harmed by evaluating the feature on small blocks given how easy it is to radically

change the sample distribution with even minimum value changes. On the other hand, large blocks,

being too global, lose their information uniqueness, that is they tend to contain the same information

as the area of the image involved is greater. Furthermore, the complex watermark embedding procedure

(Section III-D) is very sensitive to the number of coefficients involved; in particular, we will discuss

further ahead on how the probability of not being able to correctly embed the watermark increases

with the number of coefficients in the block. These are due to the possible non-convergence of the

embedding algorithm and will be discussed in Subsection III-D. Note that the starting distribution of the

AS coefficients is important in this respect too: a certain degree of sparsity in the initial pdf is advisable

for the algorithm to converge. The complexity of the embedding algorithm, which in turn depends on

the highly non-linear behavior of the kurtosis feature, also dictates that the blocks must be strictly non-

overlapping. This fact puts an upper bound on the number of blocks N , but it has to be noted that the
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perceptual mask would also have limited N .

The block shape has its importance too. If the block boundary is represented by straight lines as

in square blocks, blocking artifacts are likely to appear (note that vertical and horizontal gradients are

particularly perceptible for a human observer). Finally, some kind of randomization in the blocks selection

is advisable for security concerns.

For all these reasons, the procedure for the N blocks selection on the AS subband is as follows; all

random steps are driven by the secret key K. Assuming for simplicity of notation that the AS subband is

square, first a uniform, m×m square cells grid is constructed. Each basic square cell side has dimension

D, that drives the actual block size, so it has to be selected carefully. The cell boundaries are then

randomized, using a low-pass filtered, zero-mean pseudo-random sequence to represent their deviation

from the standard square cell border. This way, each cell has a generally square but with random boundary

shape. The outer cells are discarded and then the whole grid of M = (m−2)×(m−2) remaining cells is

randomly shifted both horizontally and vertically by at most D/2. Last, N out of M cells are randomly

selected as the embedding blocks, provided that they satisfy a certain minimum area criterion, expressed

by the fact that the number of coefficients in any given cell must be greater than ρD2, where ρ is a

design parameter fixed at 0.9 in this work. Although the blocks are not completely random, using this

extraction procedure still achieves a high degree of security (given by the random shaping, shifting and

selection) while guaranteeing both that wavelet coefficients spatial redundancy is adequately exploited

and a sufficient number of non-overlapping blocks can be selected.

The number of blocks N is an important factor to determine both watermark imperceptibility and

detection performances. It is obtained as follows:

N = bβ ·Mc (3)

where β is a design parameter controlling the coverage by the blocks of the AS subband. Given the

above area constraint on the blocks, there exists a maximum value βmax beyond which it is impossible

to obtain the requested number of blocks satisfying said criterion. The value of βmax depends on both

the host image and the secret key, and is usually in the range [0.6, 0.7].

In this work, we have found that using ρ = 0.85, D = 6 and letting β vary in the range [0.4, 0.65]

for the extraction of the blocks on the AS subband of a 2-level decomposition provides a good tradeoff

between all the requirements expressed above.

The output of the blocks selection process is therefore a structured set of blocks, indicated by BK,

which does not constitute a matrix because the blocks have different size and is formed by the position
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Hence, the blocks information BK, which stores the AS coefficients
belonging to every block, is necessarily an N-elements array of arrays,
the i-th of which is the vector xi which contains the coefficients cov-
ered by the i-th block, whose length is different for each i. Figure 25
depicts schematically the steps involved in the extraction of N = 20
blocks of size D = 6 on a 133×133 approximation coefficients subband,
obtained by wavelet decomposition using l = 2 levels of an image of
our database (recall they are all 512× 512 pixels). Every cells’ border of
the uniform grid, that is rarefied in the figure for clarity, is transformed
into a pseudo-random sequence, which is then low-pass filtered (using
a L-length FIR filter) and quantized to obtain the new, oscillating bor-
der. N blocks respecting the area constrain and not belonging to the
outer ring are finally selected at random.

6.3 feature robustness evaluation

To prove the robustness of our feature and to properly tune the pa-
rameters participating in the blocks extraction process, aside from the
heuristic considerations presented so far, we have to resort to experi-
mental tests. The parameters involved are D, the uniform cell dimen-
sion driving the size of the random blocks, and the level l of the
wavelet decomposition to which the AS belongs. We will make use of
the robustness attacks presented in Section 5.2 (security attacks would
be inappropriate in this context, since security is obtained in other
ways, such as blocks random position explained above). Tests on l

First, we will focus on the decomposition level l using a fixed block
size D = 6 and the AWGN attack for illustrative purposes. Similar re-

Figure 4: Blocks selection process.

in the AS subband of the coefficients pertaining to each one of the N blocks and a set of N vectors

xi, 1 ≤ i ≤ N , each containing the wavelet coefficients in the i-th block. This information is also used

to construct the perceptual mask, as explained in the next Subsection III-C. The feature is evaluated on

the blocks by applying Equation 1, thus returning the original, unwatermarked feature vector k which

constitutes, together with the perceptual mask, the input to the QIM embedding algorithm.

C. Perceptual mask

In this Subsection, the construction of the perceptual mask (PM) is discussed. The perceptual mask allows

to control the watermark perceptibility. Since it is directly evaluated in the same wavelet domain which

the feature belongs to, the PM can be applied as a simple constraint in the watermark embedding process,

limiting the coefficients change during the watermark embedding.

The perceptual mask is actually calculated for every coefficient of the block coefficients vectors xi hence

PM is evaluated on the same structured set of blocks BK: a set of N masking vectors mi, 1 ≤ i ≤ N ,

that contain the perceptual mask values for each coefficient location in BK. However, for the sake of

simplicity, in the following we will evaluate PM on the entire AS subband.

The basis of our perceptual mask is directly derived from [8] and references therein, in which an

additive spread-spectrum detectable watermarking algorithm is applied to the first-level detail subbands
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of a wavelet decomposition. The algorithm is also applicable to the other subbands as well. There, the

masking effect is achieved by multiplying the pseudo-random binary sequence constituting the watermark

with a perceptual mask, which we call V . This was derived from previous work on the calculation

of optimal quantization step sizes for wavelet domain image compression. The perceptual mask V is

evaluated using all decomposition levels up to 4 and all of the subbands and represents the maximum

distortion that is perceptually tolerable on a coefficient-by-coefficient basis; that means that coefficients

corresponding to higher values of the perceptual mask are allowed to vary more to accommodate the

watermark without violating the imperceptibility requirement.

The originally proposed perceptual mask V is the product of 3 terms, as in:

V θ
d (r, c) = Θ(d, θ) · Λ(d, r, c) · Ξ(d, r, c)0.2 (4)

where (r, c) represents the row and column position in a given subband. The first term is a scalar value

Θ(d, θ) which depends on the particular considered subband, corresponding to decomposition level d

and orientation θ. The second term Λ(d, r, c) is derived from the luminance (that is the coefficient value

itself), following the principle that very dark and very bright regions of the image are less perceptually

sensitive to distortions than medium luminance ones. The last term Ξ(d, r, c) is an activity measure, since

the human eye is more tolerant to noise in textured areas of the image. It is calculated as the product of

the local mean square value of the detail subbands and the local variance in the approximation subband,

both evaluated in a local neighborhood of the considered coefficient, where the local neighborhood is

defined as unitary for the highest decomposition level and doubling in size as the level decreases.

Our perceptual mask is slightly different and is expressed as:

PM(r, c) = α · Λ(r, c) · Ξ(r, c)0.1 · Γ(r, c)−2 (5)

where (r, c) now represents the row and column position in the AS subband, which is the watermark

domain, so the d and θ indexes could be dropped. Since we always embed in the AS subband, the term

Θ is discarded; instead, we introduce a weight α as an overall strength factor. The log-luminance term

Λ(r, c) scans the AS subband. Given the variable, real-valued luminance range of the log-luminance image

I , as opposed to the standard luminance range [0, 255] found in LDR images, to properly identify dark

and bright areas of the image the following expression for Λ(r, c) is adopted, based on log-luminance

distribution percentiles:

Λ(r, c) =


1 if l ≤ l10 ∨ l > l90

1− 1
2 · l−l10

l50−l10 if l > l10 ∧ l ≤ l50

1− 1
2 · l90−l

l90−l50 if l > l50 ∧ l ≤ l90

(6)
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where l is the coefficient value in the position individuated by (r, c) in the AS subband (which is a

low-pass filtered version of the actual log-luminance value) and l10, l50 and l90 are the 10-percentile,

50-percentile and 90-percentile values respectively of the AS coefficients distribution. The term Λ(r, c),

therefore, assumes the value 1 for the extreme parts of the distribution and then decreases linearly towards

its median value where it assumes the value 0.5, in accordance with the luminance principle expressed

above.

The expression for the activity term Ξ, using Matlab notation for the sake of simplicity, is as follows:

Ξ(r, c) = V ar {AS(r − 1 : r + 1, c− 1 : c+ 1)} ·

Msv {DS2(r − 1 : r + 1, c− 1 : c+ 1); (7)

DS1(2r − 9 : 2r + 2, 2c− 9 : 2c+ 2)}

where V ar(·) and Msv(·) stand for variance and mean square value respectively. The local neighborhood

is enlarged to a 3×3 square centered on (r, c) in the AS; the position of the local area for other subbands

is derived from the decimation and filtering steps in the wavelet decomposition. The DS are considered

to compute the PM values since their coefficient values affects perceptibility of the reconstructed data.

The exponent for the activity term in Equation 5 is different from that in Equation 4 since in the

former an additional term Γ(r, c) has been introduced to take into account contour information. Among

the areas with high activity, individuated by the activity term, the ones characterized by a sharp contour

dividing two relatively flat areas are the less perceptually tolerant to noise. Therefore a dedicated term

is necessary to reduce the perceptual mask in their vicinity. To construct the term Γ(r, c), first we run a

Canny edge detector on the AS to extract the most significant edges. Then, starting from a binary map

(1 represents the edge points), we apply a moving average filter in a 7 coefficients sized neighborhood to

spread the edges. Then, the result γ(r, c) is transformed into the final value by: Γ(r, c) = 10γ(r,c). This

way, the coefficients without edges retain the multiplicative value 1 in Equation 5, while this value is

decreased exponentially as they get nearer the contours (recall the negative exponent of the term Γ(r, c)).

For illustrative purposes, Figure 5 provides an example of a perceptual mask and its constitutive parts;

all figures are rendered in a normalized gray scale version of the corresponding function, so that the gray

values are only representative of the relative strength and not of the absolute values of the various terms.

The original AS coefficients of the “Tree” HDR image and the closely associated Λ component, that

favors medium valued coefficients, are depicted in Figure 5a and 5b respectively; note how boundaries,

which present artifacts caused by the border symmetry condition in the wavelet transform, are neglected

in the perceptual mask computation. The activity term Ξ is reported in Figure 5c; note how the product
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of the log-luminance term and Ξ attains high values in the proximity of edges, as illustrated in Figure 5d

(edges visibility is reduced in Figure 5a due to the low-pass filtering). With the introduction of the

additional edge term Γ of Figure 5e (inverted to improve readability), the overall perceptual mask, which

is depicted in Figure 5f, is much less permissive around the edges and tends to reach its maximum

values in the textured, medium luminance areas of the image. Subsection IV-C shows how the various

components coordinate to achieve imperceptibility while retaining robustness.

D. Watermark embedding and detection

This Subsection briefly describes in turn the embedding process and the detector used in the watermark-

ing process of the reference log-luminance image. As already mentioned, the watermarking paradigm

employed in this work is the well-known QIM method, first presented in [7], in its detectable form. At

the detector side, we are only interested in assessing whether the watermark individuated by the secret

key K is present or not in the considered HDR image. Since our feature is 1-dimensional, that is to

say scalar, there is no need for vector quantization techniques thus leading to an efficient computational

implementation of the algorithm.

The watermark embedding consists of the quantization of the feature value using one of two possible

scalar quantizers, one shifted with respect to the other by ∆/2 (where ∆ is the quantization step in

the case of uniform quantizers). Each quantizer is identified by an embedding bit value, so if multiple

feature values are available in a feature vector it is possible to embed a watermark codeword by selecting

the appropriate quantizer for each feature vector component; the bit associated with every component

(or block as in our case) is embedded and decoded separately. In the case of detectable watermarking

scenario, the watermark payload is only 1 bit (the watermark presence itself), hence bit repetition is the

most effective coding for its transmission. We can assume without loss of generality that the quantizer

associated to value 1 is always used. Moreover, to enable security, QIM techniques generally rely on

shifting the codebook by a random quantity. In our case it is a scalar quantity d, whose application does

not affect either imperceptibility or robustness given that it is derived exclusively from the secret key

K and it is independent from the host feature value. Given a kurtosis feature value, the corresponding

watermarked feature value is expressed by:

h = Q∆(k − d∆) + d∆ (8)

where k is the original feature value, h is the quantized value, ∆ is the quantization step, Q∆(·) is the

quantization operator, with quantization step ∆ as parameter, and d is the codebook shift. The shift d is
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ORIG

(a) Original AS of the log luminance image I .

Lambda

(b) Luminance perception term: Λ.
Csi

(c) Activity perception term: Ξ.

Mask=Lambda*Csi

(d) The product Λ · Ξ.
Gamma

(e) Edges perception term: Γ.

Mask2=Lambda*Csi*Gamma

(f) The final perceptual mask: PM = Λ · Ξ · Γ.

Figure 5: The perceptual mask of the “Tree” figure and its product terms. Brighter values in (f) represent

less perceptible areas to changes in the kurtosis feature.
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extracted from a uniform distribution in [−1/2, 1/2] and then multiplied by ∆. Previous counter-shifting

of the original feature value is necessary to ensure that h is the nearest reconstruction point. Therefore,

the secret key K associates with each block a codebook shift uniformly distributed in the quantization

interval.

To decode the bit embedded in a block using the QIM paradigm, the received feature value k′ (which

is potentially different from h, e.g., due to attacks on the watermarked image) is re-quantized based on

a codebook that is the union of all possible embedding codebooks. The bit sequence associated with the

codebook to which the resulting reconstruction value belongs is the decoded string. In our case a single

bit is embedded in every block, by always employing only one of the two scalar quantizers shifted of

half quantization step one with respect to the other, so that it is simply necessary to evaluate whether

the reconstruction value h′ is associated or not to the quantizer corresponding to the bit value 1. From

another perspective, typical of the QIM detectable watermarking embedding process [7], the detection of

the bit embedded in every block consists in assessing whether the received feature k′ is within ∆/4 to

the closest reconstruction value of the sole quantizer associated with the bit value 1 (otherwise the bit

value 0 would be detected). Therefore, using again the notation presented above and in Equation 8, the

decoded bit b′ out of a single received block is recapped in the following pair of expressions:

h′ = Q∆(k′ − d∆) + d∆

b′ =

 1 if |k′ − h′| ≤ ∆/4

0 otherwise

(9)

In this work we do not use uniform quantization; instead, as we mentioned earlier, due to the fact

that the feature shows its robustness properties by bounding its relative (and non absolute) variation

following attacks on the image a non-uniform quantization with higher quantization steps as the feature

value increases is more appropriate in this context. The quantization scheme is illustrated in Figure 6,

where reconstruction values are identified by crosses and the circles stand for the reconstruction values

of the dual quantizer associated with the bit value 0, which is never used. For kurtosis values k < 15,

three quantization intervals Iq, q ∈ {1, 2, 3} are employed. Each interval hosts a single reconstruction

value, that is every interval is long exactly one corresponding quantization step; they are respectively

I1 = [1, 2] with ∆1 = 1, I2 = [2, 5] with ∆2 = 3 and I3 = [5, 15] with ∆3 = 10. For those rare

values beyond I3, namely k > 15, the quantization step ∆3 is used too. The case d = 0 in which the

codebook is not shifted is illustrated in Figure 6. If d 6= 0, the reconstruction values are no more in the

center of its corresponding quantization interval, as depicted in Figure 7 (observe how the quantization
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Figure 6: Quantization with d = 0.
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Figure 7: Quantization with d = −0.3.

intervals remain fixed). This in turn implies that a segment of length |d| ·∆q/2, corresponding to the part

associated to the dual reconstruction value (the circles), is included in any given quantization interval; if

the feature value belongs indeed to these segments, its corresponding reconstruction value would lie in

the adjacent quantization interval. Therefore, the quantization step associated to the latter interval is in

these cases adopted to minimize unavoidable decoding errors near the quantization interval boundaries;

in particular, with respect to Eq. 9, the correct decoding region when d < 0 is less than ∆q/4 for k′ < h

and when d > 0 is more than ∆q/4 for k′ > h. Such errors can be expected to be compensating each

other and concern only the less robust blocks anyway. The actual watermark embedding is performed

by applying an optimization algorithm to xi, 1 ≤ i ≤ N , the AS coefficients in each of the N blocks

contained in BK, in a way such that the corresponding watermarked coefficients vectors yi in WBK have

the quantized feature values vector h. The perceptual mask described in Subsection III-C is used as a

L∞-norm constraint in this process, in the sense that PM(r, c) acts as the upper bound of the absolute

admissible distortion of the AS coefficient in the position (r, c) for the watermark to be imperceptible.

The embedding procedure is described as follows: dropping as usual (r, c) and the block index, given a

coefficient vector x of length L and the associated PM vector m, we first define the coefficients subspace

Ω in <L (more precisely, in [1,∞]L) representing the region around the point x within the perceptual

mask:

Ω=
{
z ∈ [1,∞]L : |z− x| ≤m ∧ ‖z− x‖1≤τ ·‖m‖1

}
(10)

The L1 constraint is necessary to support the coefficient-by-coefficient based construction of the perceptual

mask, that is to say the PM is constructed neglecting the case where more than one adjacent coefficients

is changed at the same time. For this reason, the second inequality is introduced to avoid that too many

coefficients simultaneously experience their maximum variation in any given block; it is driven by the
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parameter τ which expresses the ratio of the sum of actual coefficient modifications with respect to

the maximum allowed, namely the L1-norm of m. The fine tuning of τ is an important design choice,

given that its value greatly influences not only the imperceptibility requirement satisfaction but also the

size of the subspace Ω and therefore the convergence of the embedding procedure, as described below.

Experimentally, a good value for τ is 0.3.

Hence, the mathematical procedure embodying the embedding process has to move the original feature

value to its quantized value, or at least as close as possible, while not moving y out of Ω:

y = arg min
z∈Ω

|k(z)− h| (11)

where the function k(·) is the kurtosis evaluation as in Equation 1. If this procedure converges to 0, then

k(y) = h as required. Notably, there could be many such solutions in the subspace Ω. This does not

matter as long as the individuated y satisfies both the PM constraints and the above condition on its

kurtosis.

There is a distinct probability that the procedure expressed by Equation 11 does not converge to 0. Less

likely is the non-convergence of the minimization process; in particular, this especially happens when

trying to change low kurtosis starting values k to distant h target values, which is a further justification

of the non-uniform, increasing step quantization adopted in this work. A much more likely possibility is

that the perceptual mask prevented the reaching of a suitable solution, namely the feature value can not

be quantized without introducing more distortion than allowed in the coefficient vector, which implies

that the perceptual constraints must not be stricter than necessary. In fact, when Equation 11 does not

converge, the kurtosis value of the watermarked vector is not h and this fact decreases the robustness of

the considered block against attacks since its feature value is closer than intended to the correct decoding

threshold. In extreme situations, it could be impossible to move the feature value out of the wrong

quantization interval, in this way triggering a decoding error even in the absence of attacks. Obviously,

it is imperative that not too many blocks experience this non-convergence situation because they hurt the

miss probability PM . The analysis on PM is carried out in Section IV.

Once the watermarked feature vectors yi, 1 ≤ i ≤ N , are obtained, the last step that the embedder

performs is the inverse wavelet transform of the log-luminance watermarked image Iw using both the

AS subband modified according to WBK and the detail subbands DS.

The watermark recovery block, that is the watermark detector, is depicted in Figure 3. Given a

potentially watermarked log-luminance image I ′w, it follows in the steps of the embedder, using the

secret key K, by extracting the received block information BK’, composed of attacked coefficients vectors
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y′i, 1 ≤ i ≤ N , and then by evaluating their kurtosis as in Equation 1, until a received feature vector k′

is obtained. Then, each block is decoded separately according to Equation 9. Last, a detection decision

is taken using a threshold T on the number of correctly decoded blocks (that is to say with decoded bit

value b′ = 1) out of the total number of embedding blocks N .

This detection structure allows to control in a simple way the probability of false alarm PFA as a

function T . In fact, if the image is unwatermarked, the received feature value is completely uncorrelated

with the reconstruction value associated to the bit 1, hence its probability of correct detection is 0.5 given

the uniform distribution of the shift d. Furthermore, since the blocks are non-overlapping, we can safely

assume that the blocks detection probabilities are independent one from the others. Given these premises,

the occurrence of a false alarm consists in the contemporaneous verification of at least T events with

probability p = 0.5 out of N . If we call E the latter event for a generic p, we have the following formula

based on the binomial distribution:

P (E) =

N∑
l=T

(
N

l

)
pl (1− p)N−l (12)

and then substituting p = 0.5 we obtain the false alarm probability as:

PFA =

N∑
l=T

(
N

l

)(
1

2

)l+N−l
=

(
1

2

)N N∑
l=T

(
N

l

)
(13)

which is easily computable and is used in Section IV to construct the ROC curves.

IV. EXPERIMENTAL RESULTS

This Section shows the effectiveness of the watermarking system while showing an example workflow

for the parameters setting and performance evaluation. First, to properly assess how the system performs

in terms of imperceptibility and detection, it is important to note that there is a number of variables

which affect the outcome, both external and internal (that is to say design parameters). The former ones

include the host HDR image, signifying both its content (and thus features) and size; the secret key K,

which drives all the pseudo-random steps in the algorithm and the tone-mapping operators (or any other

attack) considered for robustness requirements. Aside from those suitably fixed throughout Section III,

the design parameters that the system leaves free to vary at this point are: the PM overall strength factor

α (see Equation 5) and the blocks coverage percentage β (see Equation 3).

These parameters should be chosen to guarantee optimal performance depending on the external

variables; however, determining a good-for-all set of design parameter is not simple in this case. In

this work, we have operated as follows. First, in Subsection IV-B a single image is considered. Here,
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some experimental tests are run to evaluate both detection performance and imperceptibility, using a small

set of secret keys and of TM operators while varying the α and β parameters, to infer some guidelines

on how to choose the latter for any image by studying their behavior for the considered image. Then,

having fixed said design parameters (which are not the optimal ones for every image, every secret key and

every TM operator but represent a reasonable choice), in Subsection IV-C we conduct a brief evaluation

on the functionality of the perceptual mask and in Subsection IV-D we run the robustness tests on the

whole set of images and finally report the results for each TM operator. Subsection IV-E assesses the

robustness of the system to mask-driven noise addition. Finally, Subsection IV-F compares the system

to an hypothetical spread-spectrum system applied adopting the same experimental conditions and TM

processes. The experimental Subsections are preceded by Subsection IV-A, in which the HDR image

database and the set of tone-mapping operators considered has been described.

A. Experimental Conditions

The HDR image database used in our test is an heterogeneous set of 32 bit RGBe encoded images

collected from two sources: the Munsell Color Science Laboratory’s [9] and Greg Ward’s [10] website

repositories. The selection was performed so as to provide some variety in terms of subjects being

represented as well as image sizes and dynamic ranges. Table Ia reports the images list, complete with

the relevant data.

The tone-mapping operators considered in this work are those made available by the pfstmo library,

part of the pfstools package [18]; they are listed in Table Ib. Additionally, a tone-mapping algorithm

recently proposed by some of the authors of this work is also considered. Most of the algorithms need

some calibration efforts such as image-dependent parameter tuning and/or gamma correction to improve

the output tone-mapped image. Each image has undergone this process after it has been watermarked

(recall that the watermark is imperceptible); without discussing the details at length, the images have

been calibrated manually with the aim to provide the best possible result from a perceptual point of view

with reasonable effort, i.e., without exhaustive manipulation.

B. Design Parameters Tests

The well-known “Tree” image is selected as the benchmark image for these tests due to its varied visual

content, making it a challenging testbed.

First, imperceptibility is evaluated through the HDR-Visual Difference Predictor (HDR-VDP) tool [19],

which is a full-reference visual difference metric (meaning there is a so-called mask image to compare
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Image short name Source Size Notes

Apartment [10] 2048×1536 Natural, indoor

AtriumNight [10] 760×1016 Natural, indoor

Desk [10] 644×874 Natural, indoor

Montreal [10] 2048×1536 Natural, outdoor

Chair [9] 2000×1312 Natural, indoor

Atrium2 [9] 2000×1312 Natural, indoor

Fog [10] 751×1130 Natural, outdoor

Colorcube [9] 2000×1312 Natural, indoor

Dandelion [9] 1312×2000 Synthetic

DaniBelgium [10] 1024×768 Natural, indoor

Hallway [9] 2000×1312 Natural, indoor

Memorial [10] 512×768 Natural, indoor

Rend01 [10] 1024×1024 Synthetic

Splitcube [9] 2000×1312 Natural, outdoor

Tree [10] 928×906 Natural, outdoor

(a) List of the HDR images composing the test database.

Authors and year Abbreviation Reference

Mantiuk et al., 2008 M08 [11]

Reinhard et al., 2005 R05 [12]

Drago et al., 2003 D03 [13]

Fattal et al., 2002 F02 [14]

Pattanaik et al., 2000 P00 [15]

Durand et al., 2002 D02 [16]

Boschetti et al., 2010 B10 [17]

(b) List of the tone-mapping operators considered

throughout this work.

Table I: Database details.

a target image with). Given two similar images, the output of the HDR-VDP is the percentage of pixels

that, according to its model, a human observer would perceive as different with a given probability

(respectively 75% and 95%). In this context, it is used to evaluate the watermarked HDR image quality

with respect to the HDR original image in a way much more precise and tied to the HVS than purely

objective metrics like the PSNR.

In Table II it is reported a run with a random secret key. The factors α and β are allowed to vary

respectively in the sets {4, 6, 8, 10, 12} and {0.4, 0.45, 0.5, 0.55, 0.6, 0.65}. The number of extracted

blocks N is also reported for reference. The output of the HDR-VDP is expressed as the pixel percentages

at the 75% and 95% work points for all the combinations of the two design parameters. Obviously, the

perceptibility of the watermark increases with higher α (which means looser PM). However, this is not

always true column-wise, that is increasing the coverage percentage β. This counter-intuitive result is

due to the fact that changing β has been implemented as to lead to a complete re-extraction of the blocks

position, so that their “embeddability” properties vary from one coverage percentage to the next. This

was a design choice to increase security, since this way it is impossible to guess the position of some

blocks (and so possibly the secret key) by observing two watermarked images using different β but the
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α

β N HDR-VDP % 4 6 8 10 12

0.5 561
75 0.103 0.246 0.407 0.541 0.667

95 0.044 0.115 0.202 0.273 0.343

0.55 617
75 0.110 0.272 0.387 0.515 0.673

95 0.051 0.139 0.195 0.273 0.342

0.6 673
75 0.130 0.281 0.444 0.609 0.803

95 0.057 0.141 0.224 0.313 0.444

0.65 729
75 0.135 0.263 0.460 0.652 0.872

95 0.063 0.130 0.218 0.338 0.460

Table II: Imperceptibility test: relative frequency of perceived changes in terms of number of pixels,

expressed in percentage.

same key. Although in principle the same process could be applied with α, for which the blocks are not

re-extracted, this latter factor is not meant to be changed after its selection for a specific image, while

β is intended as the primary imperceptibility/robustness tradeoff parameter. If it is planned to securely

watermark the same image with both parameters variable (as in this demonstrative test), then the blocks

should be re-extracted for every (α, β) pair. However, though perhaps not monotonically for a given

secret key as in Table II, imperceptibility generally worsen with increasing β as it should be.

Next, decoding performance have to be taken into account to properly select the embedding parameters.

The watermarked images obtained through the previous run used to construct Table II are decoded both

as they are and after tone-mapping using the methods listed in Table Ib. The number of missed blocks

(not correctly decoded as in Equation 13) with respect to the total number of blocks N are shown in

Table III, which has the same setting as Table II. The third column represents T ∗, the complement of

the threshold T (T ∗ = N − T ), which is the maximum number of allowed missed blocks for an overall

watermark miss not to occur. The threshold T is calculated using Equation 13 so that PFA < 10−6.

The rows labeled “None” represent the decoding results of watermarked images without any specific TM

(clearly the decoding is still operating after the log-luminance transform) and so account for some of the

non-convergent blocks (those not correctly decoded) as explained in Subsection III-D. As foreseeable,

the amount of these blocks decreases as the PM is looser (that is with higher α); column-wise, the

percentage tends to remain invariant, with some variability induced by the secret key. Interestingly, the

latter variability is reflected in Table II (the difference being that in the latter there is an underlying linear
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β N T ∗ TM α = 4 α = 6 α = 8 α = 10 α = 12

0.5 561 224

None 129 102 88 84 79

M08 158 154 149 141 131

D03 195 201 205 198 194

R05 226 227 232 237 233
F02 241 240 241 238 242
P00 225 232 233 227 230
D02 242 235 234 227 227
B10 188 181 177 183 174

0.55 617 250

None 141 113 100 90 82

M08 189 170 163 157 156

D03 201 193 194 189 188

R05 245 240 244 251 256
F02 275 267 266 263 262
P00 234 228 226 231 230

D02 233 231 233 230 223

B10 219 208 206 197 205

0.6 673 274

None 165 134 119 111 101

M08 201 184 175 174 168

D03 233 227 229 229 222

R05 275 267 266 263 262

F02 300 290 294 299 292
P00 272 268 277 277 281
D02 280 278 271 272 277
B10 228 221 223 227 217

0.65 729 300

None 149 113 99 96 92

M08 218 190 182 175 164

D03 233 225 220 222 223

R05 296 286 280 281 281

F02 307 296 289 288 287

P00 275 268 268 267 265

D02 287 272 269 271 266

B10 245 243 236 238 232

Table III: Decoding test: number of missed blocks.

increase), suggesting that non-convergent blocks are also those that impact on perceptibility the most.

However, given that the secret key could not be chosen freely and that in blind watermarking systems

there is no side channel, it is impossible to avoid using these blocks in this framework. It has to be noted

that, as the number of blocks N increases along with the coverage factor β, the threshold accounts for

a higher percentage of incorrectly decoded blocks, as it is more and more difficult to get the number of

0.5-probability events biased away from half of the overall occurrences as the number of events increases.
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Therefore, there is a distinct advantage in using more blocks from a decoding performance point of view,

although the monotonicity of this advantage is dependent on the secret key.

The other rows, labeled with the corresponding abbreviation, depict the decoding results after the

application of the considered TMs. As expected, more blocks are wrongly decoded; this results in

some overall misses (highlighted in bold), that in turn reflect the loss of the watermark. The (α, β)

combination for which a miss occur for any TM should be discarded, at least for this image, unless some

particular reason prevents it (e.g., unsatisfactory tone-mapped image visual quality due to algorithm

inappropriateness). It is notable that, as α increases, the number of incorrectly decoded blocks lowers

much less than its non-TM counterpart, suggesting that those blocks which converge to the correct

decoding interval only by loosing the PM are inherently less robust than the others. This reasoning

implies that, at similar HDR-VDP scores, it is more convenient from a robustness point of view to have

more and perceptually tighter blocks.

It is also possible to observe a sharp increment in decoding errors in the column α = 4. This indicates

the lower limit of the strength of the PM, as it hampers the convergence of too many blocks, including

those with good robustness and perceptibility properties (with α = 0 there would be no watermarking

process).

In conclusion, the best watermarking strategy would be to choose the perceptual mask strength factor

α to let imperceptibility and robustness lie in a suitable interval and then tuning the coverage factor β

according to the robustness-imperceptibility trade-off as required. Decoding performance, however, are

bound to improve as the size of the image increases, both because of the higher number of blocks used

for watermarking purposes and of the higher quality of the watermarked images.

By inspection of Table III, a reasonable parameter choice would be α = 8 and β = 0.65, which

does not show misses and is still very good in terms of perception. Following our previous discussion,

this choice maximizes the number of blocks while not widening excessively the perceptual mask. This

combination is therefore adopted for the remainder of the tests.

C. Perceptual mask components evaluation

Table IV proves the importance of each of the components of the mask for achieving high imperceptibility,

while at the same time ensuring sufficient robustness. In this test, the “Tree” image has been watermarked

with the same secret key as before, but using only some of the mask components in turn and normalizing

the mask energy with the α parameter so that all the alternative masks have the same energy as the

proposed one (note that it does not imply that the watermark will have the same energy). The HDR-VDP
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Components
HDR-VDP % TM

DWRdB
75 95 None M08

Λ 0.123 0.047 171 208 34.8
Ξ 1.730 1.045 20 99 22.4
Λ · Ξ 1.373 0.820 24 105 22.8
Λ · Ξ · Γ 0.460 0.218 99 182 32.2

Table IV: Perceptual mask components performance.

is reported together with the Data-to-Watermark Ratio (DWR), expressed in dB, in the logL domain.

To assess robustness, the number of decoding errors is also reported, for the cases of no additional

manipulation and the M08 tone-mapping algorithm.

As it can be seen, using only the luminance component Λ achieves high imperceptibility, but this is

because the total watermark energy, expressed by the DWR, is quite low; this also causes an appreciable

loss in robustness. On the other hand, using only the activity component Ξ shows how the watermark is

robust when it is preferably embedded in areas of the image with high variance, but also how perceptible

it is, since high activity, either dark or bright areas of the image are heavily modified. Combining the edge

component Γ with the activity component helps to improve the perceptibility issue without impacting

too much on the system robustness performance, showing that dealing specifically with sharp contours

is advisable. Joining the three components as proposed is a satisfying tradeoff between the high degree

of imperceptibility necessary for high quality HDR images and the requested robustness.

D. Robustness against tone-mapping

Tables V and VI report the decoding results with this parameter combination, for large and small images

respectively; the results for the “Tree” image are repeated here for comparison. As it can be seen, the total

number of decoding errors is always lower than T ∗, so that none of the images results in a miss (except

in a pair of cases, where proper image post-tone-mapping calibration was not satisfactory). Therefore,

the watermark proves to be widely robust to tone-mapping operators as expected. With such a small set

of images it is impossible to draw ROC curves based on actual misses and false alarms. To approximate

them, we have evaluated the sample mean of the block decoding error probability pe for each of the

tone-mapping algorithms. Then, the miss probability PM is estimated as follows:

PM = 1−
N∑
l=T

(
N

l

)
(1− pe)l pN−le (14)
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Apartment Montreal Chair Atrium2 Colorcube Dandelion Hallway Splitcube

N 3106 3106 2567 2567 2567 2567 2567 2567

T 1686 1686 1404 1404 1404 1404 1404 1404

T ∗ 1420 1420 1163 1163 1163 1163 1163 1163

TMO



None

M08

D03

R05

F02

P00

D02

B10

518 882 611 508 544 811 567 474

652 957 731 587 599 824 597 541

734 936 779 579 599 811 588 528

951 1000 696 588 653 840 600 551

1278 1106 910 843 994 856 920 811

803 1009 711 703 717 820 601 603

1131 931 779 667 818 869 594 630

1017 950 1030 666 895 1219 761 677

Table V: Decoding test for the largest images: number of missed blocks.

AtriumNight Desk Fog DaniBelgium Memorial Rend01 Tree

N 666 457 737 666 298 938 729

T 394 279 433 394 190 542 429

T ∗ 272 178 304 272 108 396 300

TMO



None

M08

D03

R05

F02

P00

D02

B10

102 119 101 175 64 231 129

161 151 144 195 96 259 182

130 149 127 201 81 245 220

142 189 118 223 98 257 280

256 176 279 263 97 341 289

182 168 173 212 103 269 268

204 163 203 224 98 332 269

154 171 195 239 98 295 243

Table VI: Decoding test for the smallest images: the number of missed blocks.

The ROC for 4 values of the number of blocks N are reported in Figure 8. Although the results are

already satisfactory for smaller images, they are excellent for larger images. It has to be noted that

the number of block decoding errors in a given image is strongly dependent on how good is the tone-

mapping algorithm for the specific image (as the misses in Tables V and VI demonstrate). There are

other factors of variability, as already stated at the beginning of this Section, embodied by the image

itself and the secret key. However, the fluctuation around the mean error probability given by these two

parameters are negligible when the tone-mapping result possesses sufficient visual quality; hence, the low
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Figure 8: Estimated ROC for each of the TMOs, plotted for various values of the number of blocks N .

block decoding error probability obtained in these cases guarantees the excellent performance shown in

Figure 8, especially for larger images.

E. Robustness against noise addition

Next, we also consider robustness against a more basic manipulation: noise addition. To comply with the

high quality imagery paradigm of this work, noise addition is performed in such a way that its power is

maximized while guaranteeing that its perceptibility remains low. To this aim, the perceptual mask is used

and the noise is added directly in the embedding wavelet domain. First, a pseudo-random noise matrix

with uniform, zero-centered distribution is extracted. The noise is 2-D low-pass filtered to increase its
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(a) Histogram for the “Tree” image.

Image PM DNRdB

Apartment < 10−14 28.3
Montreal < 10−14 38.2
Chair < 10−14 27.8
Atrium2 < 10−14 31.1
Colorcube < 10−14 31.3
Dandelion < 10−14 43.9
Hallway < 10−14 43.8
Splitcube < 10−14 35.6
AtriumNight < 10−14 38.5
Desk 7 · 10−14 30.5
Fog < 10−14 34.9
DaniBelgium 6 · 10−12 33.4
Memorial < 10−14 31.4
Rend01 4 · 10−11 35.7
Tree < 10−14 31.1

(b) PM and mean DNR for all the images.

Figure 9: Robustness against mask-driven noise addition.

correlation and also locally scaled so as to evenly distribute its energy in the approximation coefficients

subband. Then, the resulting pattern is multiplied by the perceptual mask and by a global strength factor;

finally, it is added to the corresponding watermarked subband.

The results of this test are shown in Figure 9. The global strength parameter is manually set for each

watermarked image such that the perceptual distortion in terms of HDR-VDP is about the same as that

introduced by the watermarking process itself with respect to the original images. Each image underwent

1000 noise additions; the noise obviously causes more blocks to be incorrectly decoded. The histogram of

the number of incorrectly decoded blocks is reported in Figure 9a for the “Tree” image as an example. To

estimate the miss probability PM , one could approximate the histogram with a normal distribution, thus

computing its mean and variance, and then calculating the area of the distribution that goes beyond the

threshold, fixed by PFA < 10−6, using the complementary error function. Table 9b shows such estimated

PM , along with the mean Data-to-Noise Ratio (DNR) of the noise attack for that image, expressed in

dB. Both the DNR and PM largely depend on the structure of the image through the mask. However,

given the usually high noise energy, the worst miss probability is still quite satisfying, considering also

the fact that the system is optimized for the “Tree” image.
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F. Comparison with spread-spectrum watermarking

Last, we have run a comparison test using spread-spectrum watermarking, the other major paradigm in

digital watermarking (see [1]). The test is confined to the “Tree” image and the embedding is performed

in the same wavelet domain as the proposed method employing the algorithm discussed in [8]. The

proposed log-luminance transform step is still applied to convert the originally LDR based algorithm to

the HDR domain.

Since now the watermark is embedded in all of the AS subband, the column feature vector x indicates

all of the coefficients. After having generated the watermark vector zK , which is extracted using the

secret key K (in this case the watermark is a pseudo-random sequence composed of +1 and -1 of the

same size of x), the watermarked subband is:

y = x + γ · zK ·w (15)

where γ is a strength parameter, which as before is set such that the perceptual quality of the watermarked

image is about the same as that obtained with our method, and w is the masking sequence obtained as

in [8]. The watermark detection is correlation-based; given a received image, its embedding subband y′

is extracted and the correlation is computed as:

ρK =
zTKy′

V
(16)

where V is the size of the vectors. Then the correlation is checked against a threshold Tss to assess the

watermark presence. How the threshold is set depends on the system: for example, in [8] it is theoretically

set according to the Neyman-Pearson criterion and by exploiting the expected normal distributions of the

correlation under all the decoding hypothesis and some independence assumptions.

In this work, the Neyman-Pearson criterion is still used but an experimental framework is adopted

instead. Given a “Tree” image watermarked with the secret key K and then tone-mapped using a given

operator, the correlation ρK′ with a high number of extraneous watermarks (that is generated by different

secret keys) is computed: an example histogram is plotted as the solid line in Figure 10a. As expected, a

zero-mean normal distribution is obtained. By estimating its standard deviation, one could fix Tss such

that PFA = p(ρK′ > Tss). Then, 1000 other watermarked images using different keys are generated and

subsequently tone-mapped. Eq. 16 is finally applied to compute the correlations of the latter images, using

consistent keys, to obtain the correlation values in case of detection with matching keys. The histogram of

these values are plotted as the dotted line in Figure 10a which report the D03 TM case; as expected again,

it is a non zero-mean normal distribution. By estimating the standard deviation of the latter distribution, it
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Figure 10: Comparison with spread-spectrum watermarking.

is possible to compute a projected miss probability PM by evaluating the probability that the correlation

value is less than Tss, using the standard complementary error function. Figure 10b depicts the ROC

curves for such estimations. Remarkably, all TM perform similarly in the spread-spectrum context; for

this reason, only the worst and best cases are reported (D03 and M08 respectively). As it can be observed

by comparison with Figure 8, the results of spread-spectrum watermarking applied in the same conditions

as our method are considerably worse than those reported in Figure 8.

V. CONCLUSIONS

In this paper we presented an algorithm for a HDR image detectable watermarking system with the

requirements of imperceptibility and robustness against tone-mapping operators as well as security. A

previously developed watermarking system for grayscale LDR images has been employed in the LogLuv

domain.

Experimental results have proven to be very good, especially considering how the design parameters

have been set on a single image and then employed for the entire dataset. Automatic ways of setting these

parameters will in fact be considered in our future work. The watermarks embedded using our system

have always been detected, with the exception of the cases where the tone-mapping algorithms have given

visually unsatisfactory output images. The system has also been compared to a basic spread-spectrum

watermarking algorithm operating in the same domain.

As a final note, it could be interesting to switch to non-blind watermarking, which will probably be
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another likely applicative scenario for HDR image watermarking. This would allow to choose which

blocks to use for embedding, avoiding those difficult to watermark; to this aim, an extensive study of

feature variability could be of great aid in determining in which zone of the image the watermarking

system is more effective.
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