757 research outputs found

    Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes

    Full text link
    The coherent control of scattering processes is considered, with electron impact dissociation of H2+_2^+ used as an example. The physical mechanism underlying coherently controlled stationary state scattering is exposed by analyzing a control scenario that relies on previously established entanglement requirements between the scattering partners. Specifically, initial state entanglement assures that all collisions in the scattering volume yield the desirable scattering configuration. Scattering is controlled by preparing the particular internal state wave function that leads to the favored collisional configuration in the collision volume. This insight allows coherent control to be extended to the case of time-dependent scattering. Specifically, we identify reactive scattering scenarios using incident wave packets of translational motion where coherent control is operational and initial state entanglement is unnecessary. Both the stationary and time-dependent scenarios incorporate extended coherence features, making them physically distinct. From a theoretical point of view, this work represents a large step forward in the qualitative understanding of coherently controlled reactive scattering. From an experimental viewpoint, it offers an alternative to entanglement-based control schemes. However, both methods present significant challenges to existing experimental technologies

    High-order harmonic generation with a strong laser field and an attosecond-pulse train: the Dirac Delta comb and monochromatic limits

    Get PDF
    In recent publications, it has been shown that high-order harmonic generation can be manipulated by employing a time-delayed attosecond pulse train superposed to a strong, near-infrared laser field. It is an open question, however, which is the most adequate way to approximate the attosecond pulse train in a semi-analytic framework. Employing the Strong-Field Approximation and saddle-point methods, we make a detailed assessment of the spectra obtained by modeling the attosecond pulse train by either a monochromatic wave or a Dirac-Delta comb. These are the two extreme limits of a real train, which is composed by a finite set of harmonics. Specifically, in the monochromatic limit, we find the downhill and uphill sets of orbits reported in the literature, and analyze their influence on the high-harmonic spectra. We show that, in principle, the downhill trajectories lead to stronger harmonics, and pronounced enhancements in the low-plateau region. These features are analyzed in terms of quantum interference effects between pairs of quantum orbits, and compared to those obtained in the Dirac-Delta limit.Comment: 10 pages, 7 figures (eps files). To appear in Laser Physic

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure

    Attosecond control of electrons emitted from a nanoscale metal tip

    Full text link
    Attosecond science is based on steering of electrons with the electric field of well-controlled femtosecond laser pulses. It has led to, for example, the generation of XUV light pulses with a duration in the sub-100-attosecond regime, to the measurement of intra-molecular dynamics by diffraction of an electron taken from the molecule under scrutiny, and to novel ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Although predicted to occur, a strong light-phase sensitivity of electrons liberated by few-cycle laser pulses from solids has hitherto been elusive. Here we show a carrier-envelope (C-E) phase-dependent current modulation of up to 100% recorded in spectra of electrons laser-emitted from a nanometric tungsten tip. Controlled by the C-E phase, electrons originate from either one or two sub-500as long instances within the 6-fs laser pulse, leading to the presence or absence of spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Due to field enhancement at the tip, a simple laser oscillator suffices to reach the required peak electric field strengths, allowing attosecond science experiments to be performed at the 100-Megahertz repetition rate level and rendering complex amplified laser systems dispensable. Practically, this work represents a simple, exquisitely sensitive C-E phase sensor device, which can be shrunk in volume down to ~ 1cm3. The results indicate that the above-mentioned novel attosecond science techniques developed with and for atoms and molecules can also be employed with solids. In particular, we foresee sub-femtosecond (sub-) nanometre probing of (collective) electron dynamics, such as plasmon polaritons, in solid-state systems ranging in size from mesoscopic solids via clusters to single protruding atoms.Comment: Final manuscript version submitted to Natur

    Extrapolation of neutron-rich isotope cross-sections from projectile fragmentation

    Full text link
    Using the measured fragmentation cross sections produced from the 48Ca and 64Ni beams at 140 MeV per nucleon on 9Be and 181Ta targets, we find that the cross sections of unmeasured neutron rich nuclei can be extrapolated using a systematic trend involving the average binding energy. The extrapolated cross-sections will be very useful in planning experiments with neutron rich isotopes produced from projectile fragmentation. The proposed method is general and could be applied to other fragmentation systems including those used in other radioactive ion beam facilities.Comment: accepted for publication in Europhysics Letter

    Structure of the icosahedral Ti-Zr-Ni quasicrystal

    Full text link
    The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined by invoking similarities to periodic crystalline phases, diffraction data and the results from ab initio calculations. The structure is modeled by decorations of the canonical cell tiling geometry. The initial decoration model is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1 approximant structure of the quasicrystal. The decoration model is optimized using a new method of structural analysis combining a least-squares refinement of diffraction data with results from ab initio calculations. The resulting structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration rule and structural details are discussed.Comment: 12 pages, 8 figure

    β decay of 129Cd and excited states in 129In

    Get PDF
    J. Taprogge et al.; 11 pags.; 8 figs.; 2 tabs.; PACS number(s): 23.20.Lv, 23.40.−s, 21.60.Cs, 27.60.+j©2015 American Physical Society. The β decay of 129Cd, produced in the relativistic fission of a 238U beam, was experimentally studied at the RIBF facility at the RIKEN Nishina Center. From the γ radiation emitted after the β decays, a level scheme of 129In was established comprising 31 excited states and 69 γ -ray transitions. The experimentally determined level energies are compared to state-of-the-art shell-model calculations. The half-lives of the two β-decaying states in 129Cd were deduced and the β feeding to excited states in 129In were analyzed. It is found that, as in most cases in the Z < 50, N 82 region, both decays are dominated by the ν0g7/2 → π0g9/2 Gamow–Teller transition, although the contribution of first-forbidden transitions cannot be neglected.This work was supported by the Spanish Ministerio de Ciencia e Innovacion under contracts FPA2009-13377-C02 and FPA2011-29854- C04, the Generalitat Valenciana (Spain) under grant PROMETEO/2010/101, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2012R1A1A1041763), the Priority Centers Research Program in Korea (2009-0093817), OTKA contract number K-100835, JSPS KAKENHI (Grant No. 25247045), the European Commission through the Marie Curie Actions call FP7-PEOPLE-2011-IEF under Contract No. 300096, the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, the “RIKEN foreign research program,” and the German BMBF (No. 05P12RDCIA and 05P12RDNUP) and HIC for FAIR.Peer Reviewe

    Biopsy confirmation of metastatic sites in breast cancer patients:clinical impact and future perspectives

    Get PDF
    Determination of hormone receptor (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor 2 status in the primary tumor is clinically relevant to define breast cancer subtypes, clinical outcome,and the choice of therapy. Retrospective and prospective studies suggest that there is substantial discordance in receptor status between primary and recurrent breast cancer. Despite this evidence and current recommendations,the acquisition of tissue from metastatic deposits is not routine practice. As a consequence, therapeutic decisions for treatment in the metastatic setting are based on the features of the primary tumor. Reasons for this attitude include the invasiveness of the procedure and the unreliable outcome of biopsy, in particular for biopsies of lesions at complex visceral sites. Improvements in interventional radiology techniques mean that most metastatic sites are now accessible by minimally invasive methods, including surgery. In our opinion, since biopsies are diagnostic and changes in biological features between the primary and secondary tumors can occur, the routine biopsy of metastatic disease needs to be performed. In this review, we discuss the rationale for biopsy of suspected breast cancer metastases, review issues and caveats surrounding discordance of biomarker status between primary and metastatic tumors, and provide insights for deciding when to perform biopsy of suspected metastases and which one (s) to biopsy. We also speculate on the future translational implications for biopsy of suspected metastatic lesions in the context of clinical trials and the establishment of bio-banks of biopsy material taken from metastatic sites. We believe that such bio-banks will be important for exploring mechanisms of metastasis. In the future,advances in targeted therapy will depend on the availability of metastatic tissue
    corecore