525 research outputs found

    Otosclerosis: Its Clinical Aspect

    Get PDF

    The Paranasal Approach to Intrasellar Tumours

    Get PDF

    Thermal Imaging to Study Stress Non-invasively in Unrestrained Birds.

    Get PDF
    Stress, a central concept in biology, describes a suite of emergency responses to challenges. Among other responses, stress leads to a change in blood flow that results in a net influx of blood to key organs and an increase in core temperature. This stress-induced hyperthermia is used to assess stress. However, measuring core temperature is invasive. As blood flow is redirected to the core, the periphery of the body can cool. This paper describes a protocol where peripheral body temperature is measured non-invasively in wild blue tits (Cyanistes caeruleus) using infrared thermography. In the field we created a set-up bringing the birds to an ideal position in front of the camera by using a baited box. The camera takes a short thermal video recording of the undisturbed bird before applying a mild stressor (closing the box and therefore capturing the bird), and the bird's response to being trapped is recorded. The bare skin of the eye-region is the warmest area in the image. This allows an automated extraction of the maximum eye-region temperature from each image frame, followed by further steps of manual data filtering removing the most common sources of errors (motion blur, blinking). This protocol provides a time series of eye-region temperature with a fine temporal resolution that allows us to study the dynamics of the stress response non-invasively. Further work needs to demonstrate the usefulness of the method to assess stress, for instance to investigate whether eye-region temperature response is proportional to the strength of the stressor. If this can be confirmed, it will provide a valuable alternative method of stress assessment in animals and will be useful to a wide range of researchers from ecologists, conservation biologists, physiologists to animal welfare researchers

    The Impact of Exploring Computer Science in Wisconsin: Where Disadvantage is an Advantage

    Get PDF
    Assessing the impact of regional or statewide interventions in primary and secondary school (K-12) computer science (CS) education is difficult for a variety of reasons. Qualitative survey data provide only a limited view of impacts, but quantitative data can be notoriously difficult to acquire at scale from large numbers of classrooms, schools, or local educational authorities. In this paper, we use several publicly available data sources to glean insights into public high school CS enrollments across an entire U.S. state. Course enrollments with NCES course codes and local descriptors, school-level demographic data, and school geographic attendance boundaries can be combined to highlight where CS offerings persist and thrive, how CS enrollments change over time, and the ultimate quantitative impact of a statewide intervention. We propose a more appropriate level of data aggregation for these types of quantitative studies than has been undertaken in previous work while demonstrating the importance of a contextual aggregation process. The results of our disparate impact analysis for the first time quantify the impact of a statewide Exploring Computer Science (ECS) program rollout on economic groups across the region. Our blueprint for this analysis can serve as a template to guide and assess large-scale K-12 CS interventions wherever detailed project evaluation methods cannot scale to encompass the entire study area, especially in cases where attribute heterogeneity is a significant issue

    The Intraflagellar Transport Protein IFT27 Promotes BBSome Exit from Cilia through the GTPase ARL6/BBS3

    Get PDF
    SummaryThe sorting of signaling receptors into and out of cilia relies on the BBSome, a complex of Bardet-Biedl syndrome (BBS) proteins, and on the intraflagellar transport (IFT) machinery. GTP loading onto the Arf-like GTPase ARL6/BBS3 drives assembly of a membrane-apposed BBSome coat that promotes cargo entry into cilia, yet how and where ARL6 is activated remains elusive. Here, we show that the Rab-like GTPase IFT27/RABL4, a known component of IFT complex B, promotes the exit of BBSome and associated cargoes from cilia. Unbiased proteomics and biochemical reconstitution assays show that, upon disengagement from the rest of IFT-B, IFT27 directly interacts with the nucleotide-free form of ARL6. Furthermore, IFT27 prevents aggregation of nucleotide-free ARL6 in solution. Thus, we propose that IFT27 separates from IFT-B inside cilia to promote ARL6 activation, BBSome coat assembly, and subsequent ciliary exit, mirroring the process by which BBSome mediates cargo entry into cilia

    Spatial synchrony of breeding success in the blacklegged kittiwake Rissa tridactyla reflects the spatial dynamics of its sandeel prey

    Get PDF
    Synchrony in demographic rates between spatially disjunct populations is a widespread phenomenon, although the underlying mechanisms are often not known. This synchrony and its spatial patterns can have important consequences for the long-term persistence of metapopulations and can also be used to infer drivers of population dynamics. Here, we examined spatial patterns of synchrony in the breeding success of black-legged kittiwakes Rissa tridactyla in the UK, using an extensive dataset on kittiwake breeding success and 2 different ways of measuring synchrony: one reflecting synchrony in inter-annual fluctuations only (rdiff) and one reflecting synchrony in both inter-annual fluctuations and long-term trends (r). We found that between-colony synchrony in breeding success decreased with distance up to just over 200 km but that some colony pairs showed stronger or weaker synchrony than expected based on distance. This was also reflected in the configuration of spatially coherent clusters of kittiwake colonies with synchronous breeding success. Further, we compared the support for different drivers of these spatial patterns, including trophic interactions and weather conditions. We found that the spatial dynamics of the kittiwakes’ main prey in this region, the lesser sandeel Ammodytes marinus, appeared to play some role in generating synchrony in long-term patterns, but their role in generating synchrony in inter-annual fluctuations was less clear. The study shows that examining spatial patterns in synchrony can provide useful information for inferring potential drivers and the spatial scale over which they are acting

    Landscape‐mediated variation in diet is associated with egg size and maculation in a generalist forager

    Get PDF
    Human impacts alter landscapes with consequences for the distribution and availability of high‐quality food resources to populations inhabiting those landscapes, which may impact on the reproductive output of individuals in those populations. Sensitivity of wild populations to changes in food resources may vary among stages of the annual cycle. For example, in birds, effects are likely to be greater during costly stages such as egg production. Here we compare assimilated diet (from stable isotope analysis of chick feathers) and egg traits (egg size, shape, eggshell colour and maculation, using pattern‐analysis software) in Herring Gulls Larus argentatus, across seven colonies in southwest Scotland and Northern Ireland
    corecore