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ABSTRACT 
Assessing the impact of regional or statewide interventions in primary and secondary school (K-12) computer 
science (CS) education is difficult for a variety of reasons. Qualitative survey data provide only a limited view of 
impacts, but quantitative data can be notoriously difficult to acquire at scale from large numbers of classrooms, 
schools, or local educational authorities. In this paper, we use several publicly available data sources to glean 
insights into public high school CS enrollments across an entire U.S. state. Course enrollments with NCES course 
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codes and local descriptors, school-level demographic data, and school geographic attendance boundaries can 
be combined to highlight where CS offerings persist and thrive, how CS enrollments change over time, and the 
ultimate quantitative impact of a statewide intervention. We propose a more appropriate level of data 
aggregation for these types of quantitative studies than has been undertaken in previous work while 
demonstrating the importance of a contextual aggregation process. The results of our disparate impact analysis 
for the first time quantify the impact of a statewide Exploring Computer Science (ECS) program rollout on 
economic groups across the region. Our blueprint for this analysis can serve as a template to guide and assess 
large-scale K-12 CS interventions wherever detailed project evaluation methods cannot scale to encompass the 
entire study area, especially in cases where attribute heterogeneity is a significant issue. 
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geography of opportunity 
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1 INTRODUCTION 
Much of the literature discussing computer science (CS) education points to disparity in economic and 
demographic situations as a root cause for the lack of access to computer science for nontraditional 
students.1,3,5,8,12,13,15,21,23,25,33 This research implies (and sometimes explicitly states) that if students were given 
the opportunity to learn CS, the gap in gender and minority participation would be lessened. Since economic 
and demographic factors are inherently spatial in nature, this paper will focus on using elements from the 
geography of educational opportunity framework. 

The Geography of Opportunity framework is often referred to in research focused on housing and residential 
mobility. It is meant to refer to the ways that geography can influence an individual’s opportunity, i.e., that an 
individual’s options are limited by the social and economic conditions surrounding them.26 The idea behind this 
framework can be succinctly summarized with a quote that Squires and Kubrin attribute to former Albuquerque 
mayor David Rusk, “Bad neighborhoods defeat good programs”.28 

This concept can be extended to the geography of educational opportunity because there are constraints placed 
on educational opportunity by the educational infrastructure of the community.16 In Hillman’s research on the 
geography of opportunity as it applies to college choice, he explains how geography can affect educational 
opportunity by drawing a comparison to the concepts of food deserts. Hillman uses the geography of 
opportunity framework to explore the importance of place and how geography shapes educational equity and 
opportunity.17 Additionally, the geography of opportunity is examined in22 as it relates to outcomes of No Child 
Left Behind testing requirements and segregation in schools. Tate, et al.29 reminds that certain interventions in 
STEM education have been geospatially-minded in the past, especially in urban contexts; Green14 notes that 
“Access to opportunities in the United States (U.S.) is inequitable across geographic spaces”. Finally, Soja27 

advocates for using a spatial perspective to help build an understanding of the inequalities in communities so 
that action can be taken; spatial thinking through a geographical perspective can help to facilitate change. 
Where a student attends school has a direct impact on their opportunity to access CS education. Their 
geographic place can constrain or enable them more than other factors such as an understanding of what a 
computer scientist does, or seeing people in CS jobs that represent their gender, race, or ethnicity. Use of this 
framework can add the context of where to a discussion that is largely focused on the when and who. Instead of 
asking how much did CS enrollment increase from one year to the next, the question becomes where did CS 

http:opportunity.17
http:community.16
http:programs�.28
https://doi.org/10.1145/3197091.3197140


   
     

 
 

      
  

    
  

     

    
     

        
  

        
      

  
 

    
    

    
   

 
    

     
    

 
 

      
    

  
    

  
     

      
  

      
      

    
     

     
    

      
     

    
    

       
  

      
     

enrollment increase. This shift moves the analysis to a different level of granularity. When not concentrating on 
merely the net gain or loss over an entire state, the focus can be on what the changes were for each school. 

The primary questions in this study are: 
1)	 Does publicly available data give enough information to track CS course enrollment over an entire state 

without the need for costly and time-consuming surveys? 
2)	 Is it reasonable to represent high school CS course availability at the state level or is a more granular 

representation needed? 
3)	 Has the introduction of the ECS program had a disparate impact on any economic groups in Wisconsin? 

2 GEOGRAPHY IN CS EDUCATION RESEARCH 
Given the difficulty in collecting detailed data over a large area for hundreds of schools, very few prior studies 
have even a small focus on the underlying geography of their study area. The only recent CS-centric study 
explicitly mentioning geography is a report from South Carolina showing a statewide lack of geographical 
diversity for where CS coursework is offered.3 Based on survey responses from 158 K-12 educators, they 
concluded that Title 1 schools (where > 40% of the students qualify for free or reduced lunch) are less likely to 
offer computing coursework. 

A second research study10 indirectly focused on geography by using data from the Advanced Placement (AP) CS 
A exam in a regression analysis to explore the demographics of test takers across the U.S. In each state the 
relationshipswere explored between wealth and exam-taking, and the number of exam-takers from under-
represented groups, with the goal of explaining variances between states. 

Both studies consider how economic status could relate to a student’s opportunity to take computing courses in 
K-12. While one uses statewide survey data for indication of CS availability with school level economic 
information, the other uses national AP data and state level economic factors. The current study differs from 
previous work in the following ways: 

1)	 While still interested in where CS coursework is offered in the state as in,3 this study uses public data 
collected from the state Department of Public Instruction (“DPI”) instead of attempting a statewide 
survey. Schools are required to self-report on many dimensions annually, and course level enrollment 
data is one of these dimensions. While there are always concerns for the validity of self-reported data, 
this source provides complete data for all the schools in our study area without putting any additional 
workload on the schools. In addition to data being more complete and reliable than what a large-scale 
survey would provide, this data is publicly available in many states, making it quite attractive for this 
type of analysis. 

2)	 (2)The study in10 investigates the relationship between wealth and the number of students taking the AP 
CS A exam for U.S. states. This paper follows the lead of10 in examining the role that wealth can play in 
computing education; however, using a framework of geography of educational opportunity means 
considering the role of geographical place within the study, this leads the authors to disagree with10 on 
three points: (a) Analysis method - A regression analysis assumes that the data being analyzed is 
random. This paper considers how CS course enrollment and availability is not randomly distributed 
within a state and therefore violates that assumption. (b) Level of aggregation - Aggregation to the state 
level for median income as the wealth variable and exam takers assumes that the nonaggregate data is 
distributed within the state homogeneously. This paper argues that this type of data exhibits 
heterogeneity and therefore should be studied at a finer level of granularity. (c) Choice of explanatory 
variable - Using median income as a measure of wealth in10 (even if the study had been at a more 
reasonable level of aggregation) assumes that the school inherits its wealth attribute from the 
surrounding community. This paper shows that while it is not a perfect proxy as an indication of wealth, 
an individual school’s reported measure of economic disadvantage can more accurately describe the 



    
    

    
      

   

   
   

         
      

    
      

    
       

     
     

     
     

  
 

    
    

    
    

    
 

     
      

     
   

      
       

 
 

      
      

      
    

 
 

   
      

    
   

      
    

        
     

     
  

economic circumstances of the students in attendance. Since the unit of study is the school, this 
measure is within the proper context and not merely a convenient choice. Moreover, in a context such 
as Wisconsin, in which widespread school voucher programs allow many students to attend a school in a 
dissimilar economic area, median income for the surrounding community is less likely to align with the 
economic composition of a given school’s student body. 

3 THE ROLE OF PLACE 
When considering why geographical place would have a role in the analysis of CS education in public high 
schools, one should keep in mind that the institution of interest in this work is the school. In the U.S., many 
aspects of educational policy are determined not at the national level, but at the state or school level. Schools 
play a major, central role in everyday social geographies in general. Collins and Coleman bring attention to the 
fact that “they are one of the few institutions that can be found in almost every urban and suburban 
neighborhood, and with which almost every individual has meaningful, sustained contact at one or more points 
in their lives.”4 This paper focuses on Wisconsin public schools with a high grade of 12. The study is limited to 
regular schools, and does not include data related to charter, virtual, or private schools. Also discluded are data 
related to informal CS education, such as after school clubs or summer camps. The choice to limit the data in this 
way follows [2], which states that the best chance to broaden participation in computing is through formal 
education pathways; going through the formal education pathway is the only route that can ensure we are 
providing all students access to CS education. 

This study uses student enrollment counts for each school at the individual course level. The number of students 
in a school who were enrolled in a CS course can be extracted using a combination of NCES (National Center for 
Education Statistics) course codes, local course codes, and course descriptions. Economic data used in the study 
are aggregated at the school level. This initial study uses the school reported measure of economic disadvantage 
as a percentage of total students enrolled who are categorized as being economically disadvantaged. 

All of the data that are used in this study are publicly available. We collected 6 years’ worth of data from the 
Wisconsin DPI related to course enrollments, school enrollments and demographics, educator license status and 
employment, as well as shapefiles for school attendance boundary zones. Within the course enrollment data, 
we compared course NCES codes to the local course codes and the local course descriptions to identify courses 
that could count as CS for mathematics graduation credit, defined by Wisconsin Act 63.32 There are 433 schools, 
making up 378 districts in this data. The six years collected from each school included academic years 2010-11 
through 2015-16. 

Wisconsin DPI defines economic disadvantage for students who are members of households that are eligible for 
free or reduced-price meals under the National School Lunch Program (NSLP). To be eligible, a family’s income 
must be less than or equal to 185% of Federal Poverty Guidelines. Students must be identified by Direct 
Certification every year, and this information is reported by every school even if the school does not participate 
in the NSLP.31 

When considering American political geography in relation to K-12 CS education, it is important to note that 
autonomous governmental units, such as local school districts within metropolitan areas, are a defining 
feature.20,30 In fact, this type of geopolitical fragmentation is common in major U.S. metropolitan areas, 
especially in older industrialized regions of the Northeast and Midwest.19 Information should not be aggregated 
at the state level to gauge the health or impact of CS education as in,10 because doing so assumes a fixed effect 
over the study area, potentially causing false correlation or confounded analysis. How these programs are 
implemented is greatly influenced by the local context of the individual units;19 and11 have found that even the 
level of fragmentation (number of school districts) within an area can influence efforts to implement reforms. 
The degree of challenge involved in implementing a reform is increased in areas where there are a greater 
number of units. 

http:Midwest.19
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At the national level, entities like Code.org provide information about places where progress is being made in CS 
education. They show where CS can be counted towards high school graduation requirements for math or 
science. From this we can see that not all states in the U.S. have fallen in line with the recent CS For All initiatives 
from the Obama administration, and not all states allow CS courses to count towards high school graduation 
requirements. 

Code.org also shows information at the state level, where they post data about employment in CS, numbers of 
CS graduates and what they call their “Policy Environment (rubric)”, which point out whether a state has 
dedicated funding for professional development, if high schools in the state are required to offer CS courses, and 
the status of state K-12 CS standards. 

Figure 1 shows that considering where CS courses are being offered at the school district level gives a better 
understanding of where our state suffers from a lack of opportunity. We can then drill down even further to look 
at the attendance boundary zones for individual schools in a district, as in Figure 2, to see that even if the district 
level data shows that CS is present, the school level data can identify gaps in access to student groups. 

While it would be ideal to disaggregate this data all together and compile a dataset of family income for each 
individual student in addition to their course enrollment information, this is not a realistic goal for a statewide 
study like this one. Therefore, we have decided to aggregate our data at the school level, which is the most 
granular level reasonably available. Within the context of our study, school level aggregation is consistent within 
the framework, and provides minimal information loss. 

Figure 1: Districts where CS courses are offered in WI, ’14-15 

4 METHODOLOGY AND ANALYSIS 
This section describes the mapping of geographic opportunity in Wisconsin, the method used to identify 
randomness in our data, and the resultant need for finer-grained analysis than state aggregate. 

Hogrebe and Tate discuss how building a visual representation in line with Soja relates to the geography of 
opportunity.18 They focus on cognitive science literature stating that graphic representations support learning, 
visual modeling supports retention, and visual representation can help readers more easily grasp complex 
arrangements. They also note that maps have informed civic debates about regional development issues.18 

Maps bring a visual dimension to data through geospatial perspective and facilitate discussion among 
stakeholders. “By locating data in the context of place, issues become more familiar and understandable to 
those who may not have experience in data analysis.”18 We can associate variables that are not spatial with a 
location so that they can be placed in the context of where they occur. In a discussion about why we should 
show data in map form,6 refer to John Pickles24 and how he rethinks mapping, stating that maps are active and 
that they actively construct knowledge, “They exercise power and they can be a powerful means of promoting 
social change.”6 

http:issues.18
http:opportunity.18
http:Code.org
http:Code.org


 

 
    

 

 
     

 
 

        
      

      
     

      
       

     
         

       
   

    
     

      
    

       
   

   
 

Actua l districts offering CS courses 2014- 15 (b} Random Permutation of districts offering CS courses 2014-15 

True counts Expected counts Standard Deviation z-scorc p-value 

NN 1012 952.102 25.96081 2.307247 0.021• 
YN 772 933.426 30.78347 ·5.24392 1.57£-07 .. 
yy 328 226.472 17.63633 5.756752 8.57£-09'' 

Figure 2: High school attendance boundaries where CS courses are offered in Milwaukee Public Schools, 2014-15 

Figure 3: Results of Join Count analysis of CS course offerings by high school district in Wisconsin (*-indicates 
significance at the .05 level, **-indicates significance at the .01 level) 

The visual representation of where CS courses are offered in the state of Wisconsin, such as Figures 1 and 2, can 
help to identify areas of the state where intervention efforts are most needed. It also gives the opportunity to 
make the case against using a state level aggregation of measures for CS enrollment (or test takers as in10). It can 
be tested whether the data is randomly distributed in relation to space; since with a random distribution there is 
no value in knowing the spatial locations of the units, it will not provide leverage in predicting opportunity. We 
have used a join count analysis7 as a diagnostic tool to test for a random distribution. If we assume the data are 
binary, presence or absence of CS in the school, we might observe a random distribution of the categories, a 
clustered distribution of the categories, or an evenly dispersed distribution of the categories. We may wonder 
what the chances are that a particular pattern of distribution in our data could occur at random. Of our 378 
school districts, we can build a spatial weights matrix to describe the neighbor relationships between the schools 
by defining neighbor with first-order queen contiguity as a base case. This means that we examine each of the 
polygons defining a school’s geographic attendance boundary and identify where a polygon shares an edge with 
any other polygon, resulting in a contiguity matrix W. In the contiguity matrix W, each school polygon at i will be 
considered against another school polygon at j; each ij space will be assigned a 1 if the polygons share an edge, 
and a 0 otherwise. The diagonal of the matrix is 0 since a school cannot be defined as its own neighbor, and W is 
symmetric as we are defining the neighbor relationship to be bidirectional. Other potential definitions for W will 
be considered at a later time in order to build a reasonable and theoretically based weights matrix. 



     
      

         
      

        
 

 
     

      
   

   
        
 

  
    
     

    
      

    
       

    
    

    
 

     

 
 

           
      

      
     

  
 

Economic School Year 

Disadvantage 2010- 11 201 1-12 20 12-13 20 13- 14 2014- 15 2015-16 

Schools 135 125 118 117 113 115 

Tota l Enrolled 96,785 92,150 84,048 79,681 79,650 83,501 
0-25% CS Enrolled (pct) 2045 (2. 113%) 2150 (2.333%) 2255 (2.683%) 2427 (3.046%) 3213 (4.034%) 3341 (4.001%) 

ECS Enrolled (pct) 0 (0) 0 (0) 0 (0) 57 (0.072%) 172 (0.216%) 246 (0.295%) 
ECS pct of CS 0 0 0 2.349% 5.353% 7.363% 

Schools 225 234 236 239 245 242 
Tota l Enrolled 128,260 125,971 130,302 131,865 130,245 127,852 

26-50% CS Enrolled (pct) 1811 (1.412%) 1931 (1.533%) 1993 (1.530%) 2498 (1.894%) 2691 (2.066%) 3142 (2.458%) 
ECS Enrolled (pct) 0 (0) 0 (0) 0 (0) 8 (0.006%) 88 (0.068%) 192 (0.15%) 
ECS pct of CS 0 0 0 0.320% 3.270% 6.111% 

Schools 65 62 66 66 59 65 
Total Enrolled 34,404 31,836 32,192 33,003 32,164 30,955 

51-75% CS Enrolled (pct) 477 (1.386%) 3 11 (0.977%) 316 (0.982%) 436 ( 1.32 1%) 277 (0.861%) 400 (1.292%) 

ECS Enrolled (pct) o (o) o (o) 0 (0) 0 (0) o (o) 208 (0.672) 
ECS pct of CS 0 0 0 0 0 52% 

Schools 10 14 15 13 18 13 
Total Enrolled 7,355 12,129 11,608 10,507 12,691 10,177 

76- 100% CS Enrolled (pct) 57 (0.775%) 140 (1.154%) 54 (0.465%) 49 (0.466%) 408 (3.215%) 244 (2.398%) 
ECS Enrolled (pct) 0 (0) 0 (0) 0 (0) 0 (0) 255 (2.009%) 45 (0.442%) 

ECS pct of CS 0 0 0 0 62.5% 18.443% 

Our queen contiguity matrix shows 2112 distinct neighbor relationships, with each school having a number of 
neighbors from 1 to 16. We can count the number of relationships that fall into each of three categories: (1) 
Neither school has CS (NN); (2) Both schools have CS (YY); and (3) One of the schools has CS and the other does 
not (YN). We then ran a random permutation on the attribute matrix 1000 times to produce a distribution of 
random placements of the dependent variable so that we could compare the true counts to the expected counts 
under a random distribution. 

The join counts analysis results for the 2014-15 school year are shown in Figure 3, and clearly indicate that the 
distribution of course offerings is not random. Since this is the case, a regression to show the relationship 
between wealth and CS course enrollment is not appropriate for our data. It is important to note that patterns 
can be perceived even when they are not present. The benefit of using a visual representation along with a test 
for randomness is that we can be assured that our perception of clustering in the offering of CS courses is not 
merely apophenia. 

5 ECS IN WISCONSIN 
Wisconsin was the site of one of several NSF-funded initiatives that aimed to prepare annual cohorts of high 
school teachers for teaching the Exploring Computer Science (ECS) curriculum9 in the years 2014-2017. While 
the program collected its own data from participating students and their teachers, to date there has been no 
attempt to assess the statewide impact of large scale deployment of ECS. The first cohort of ECS teachers were 
deployed to Wisconsin classrooms in the 2014-15 school year. In keeping with our interest in the findings of 
[10], where wealth is shown to have an indirect impact on the number of students taking the AP CS A exam, we 
looked to see if there was a relationship between school level economic disadvantage and CS course offerings. 
Instead of a linear relationship, we found that the implementation of ECS in a school disproportionately 
impacted schools with a higher percentage of economically disadvantaged students. 

Table 1: Enrollment % in CS and ECS courses aggregated by school % of economic disadvantage, 2010-2016 

Table 1 shows enrollment percentage in CS and ECS courses for the 4 years before the first year of ECS in 
Wisconsin, and how those percentages changed with the first 2 years of implementation of ECS, broken into 4 
categories of economic disadvantage. It can clearly be seen that the schools with a higher population of 
economically disadvantaged students have had an increase in enrollment that is significantly higher than the 
other economic groups. 



      
     

   
    

       
 

 
    

    
       

   
 

    
        

       
      

       
     

      
   

    
      

 

  
       

     
   

   
       

    
      

      
 

 
    

    
     

 
 

Of particular interest is the difference between the schools in the upper and lower ranges of economic 
disadvantage. In general, we see a drop in CS enrollment, particularly for ECS, between the 2014-15 school year 
and the 2015-16 school year for the 76-100% economically disadvantaged group. We also note that in the 0-25% 
group there is little variation in CS enrollment from one year to the next, and that ECS has had little impact on 
enrollment. This is where our focus on place will allow us to more clearly identify the mechanics of these general 
observations. 

We observe that in the 76-100% group, at many schools prior to the implementation of ECS, CS courses were 
not available. Therefore, when ECS began to be offered, students were enrolled in the course at the 9th-12th 
grade levels. After the initial year, overall enrollment for the group would drop, because only the incoming 9th 
graders would not have had the previous opportunity to enroll. 

As an example, North Division High School (76-100% economic disadvantage), a Milwaukee Public School, 
enrolled 84 students in ECS in 2014-15 with 27 of those being 12th graders, 27 11th, 19 10th and 11 9th. In fact, 
84 students were their total enrollment in any CS courses, since they did not offer any course that was not ECS, 
and prior to 2014-15 did not offer any CS courses at all. In 2015-16 their enrollment in CS overall dropped to 52. 
However, the 20 students enrolled in ECS were from 9th and 10th grade, and the other 32 10th-12th grade 
students were enrolled in an Introduction to Programming course.We would expect that the 2016-17 data will 
show this in the 51-75% range since the 2015-16 ECS enrollment numbers are spread across the grades like the 
76-100% group in 2014-15. Additionally, Whitefish Bay High School (0-25% economic disadvantage), had offered 
CS courses prior to the Wisconsin ECS initiative and, despite being one of the cohort schools, did not show 
enrollment in ECS courses. However, they did show consistent enrollment among all grades for 3 years in the CS 
Principals course. 

6 CONCLUSION 
The publicly available data that was used in this study provides ample information to track CS course enrollment 
in the state of Wisconsin. We are able to observe how enrollment changes within economic groups as well as 
within individual schools, and can make inferences about how these observations could be used to guide 
interventions. However, additional evidence collected through targeted interviews with individual educators 
would enable us to consider more fully the role that teachers play in those changes. The next step in our work 
will consider the status of the teachers along with enrollment data, since our initial analysis reveals that there 
are more districts where educators holding a license for CS are employed at the high school or district-wide level 
than there are districts with schools actually offering CS courses (see Figure 4). 

Figure 4: CS courses offered vs. CS licensed teachers, 2014-15 

Since much of the narrative surrounding the subject of how to increase presence of CS courses in K-12 education 
points to a lack of qualified teachers, we feel that it is worth investigating the ways in which Wisconsin seems to 
break from that narrative. 

http:course.We


    
       

    
    

    
    

      
  

 
        

     
     

    
    
 

 

 
   

 
     

   
    

    
      

 
    

   
    

 
    

      
        

    
  

    
     

      
     

   
  

  
  

      
    

      
   

      
 

We can see that analysis at the individual school level gives us a much clearer view of what is going on in a state 
overall, and that we cannot aggregate our data to the state level. In this situation, the sum of the parts does not 
necessarily add up to the whole. Information like this can lead to more thoughtful policy and planning for 
widespread K-12 CS initiatives. We might suggest that a school interested in implementing ECS with a limited 
budget would need more funding available in the initial year, when more of the student population will have 
access for the first time to any CS course. In subsequent years, less funding would be required to sustain the 
course only for incoming 9th graders. Based on this analysis, we would most likely target groups with lower 
economic disadvantage with an AP CS initiative, rather than an ECS initiative. 

The introduction of ECS in Wisconsin has had much more of an impact on schools with a higher level of 
economic disadvantage. We have seen that schools that are more economically disadvantaged were less likely 
to have offered any CS courses before the initiative, and that adding ECS led to a wider variety of CS courses for 
those schools after the initial intervention year. Schools which were less disadvantaged were more likely to have 
already been offering CS courses, and the addition of ECS did not significantly change their enrollment 
percentages. 
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