5,166 research outputs found
Efficient discrete-time simulations of continuous-time quantum query algorithms
The continuous-time query model is a variant of the discrete query model in
which queries can be interleaved with known operations (called "driving
operations") continuously in time. Interesting algorithms have been discovered
in this model, such as an algorithm for evaluating nand trees more efficiently
than any classical algorithm. Subsequent work has shown that there also exists
an efficient algorithm for nand trees in the discrete query model; however,
there is no efficient conversion known for continuous-time query algorithms for
arbitrary problems.
We show that any quantum algorithm in the continuous-time query model whose
total query time is T can be simulated by a quantum algorithm in the discrete
query model that makes O[T log(T) / log(log(T))] queries. This is the first
upper bound that is independent of the driving operations (i.e., it holds even
if the norm of the driving Hamiltonian is very large). A corollary is that any
lower bound of T queries for a problem in the discrete-time query model
immediately carries over to a lower bound of \Omega[T log(log(T))/log (T)] in
the continuous-time query model.Comment: 12 pages, 6 fig
Hierarchical factor structure of the Intolerance of Uncertainty Scale short form (IUS-12) in the Italian version
Despite widespread use, few translations are available for the Intolerance of Uncertainty Scale short
form (IUS-12) as well as limited research on its psychometric properties in Italy. Moreover, recent evidence
has suggested a multifaceted hierarchical structure for this scale. We compared the two-factor
model to second-order and bi-factor models, in which a General IU factor was posited with two more narrow
factors: Prospective IU and Inhibitory IU. Models were tested on a pooled dataset of students (N =
609) taking the IUS-12 alone or with other IUS-27 items. The bi-factor model fitted the sample data better
than alternative models. The general factor accounted for 80% of the item variance. Presentation mode did
not impact scalar invariance. Convergent validity with neuroticism, need for closure, and the uncertainty
response scale was high for the total score. As such, scoring the IUS-12 total score is recommended in
clinical research and assessmen
On Quantum Algorithms
Quantum computers use the quantum interference of different computational
paths to enhance correct outcomes and suppress erroneous outcomes of
computations. In effect, they follow the same logical paradigm as
(multi-particle) interferometers. We show how most known quantum algorithms,
including quantum algorithms for factorising and counting, may be cast in this
manner. Quantum searching is described as inducing a desired relative phase
between two eigenvectors to yield constructive interference on the sought
elements and destructive interference on the remaining terms.Comment: 15 pages, 8 figure
Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures
We report on resonant tunneling magnetoresistance via localized states
through a ZnSe semiconducting barrier which can reverse the sign of the
effective spin polarization of tunneling electrons. Experiments performed on
Fe/ZnSe/Fe planar junctions have shown that positive, negative or even its
sign-reversible magnetoresistance can be obtained, depending on the bias
voltage, the energy of localized states in the ZnSe barrier and spatial
symmetry. The averaging of conduction over all localized states in a junction
under resonant condition is strongly detrimental to the magnetoresistance
Approximating Fractional Time Quantum Evolution
An algorithm is presented for approximating arbitrary powers of a black box
unitary operation, , where is a real number, and
is a black box implementing an unknown unitary. The complexity of
this algorithm is calculated in terms of the number of calls to the black box,
the errors in the approximation, and a certain `gap' parameter. For general
and large , one should apply a total of times followed by our procedure for approximating the fractional
power . An example is also given where for
large integers this method is more efficient than direct application of
copies of . Further applications and related algorithms are also
discussed.Comment: 13 pages, 2 figure
Quantum Networks for Concentrating Entanglement
If two parties, Alice and Bob, share some number, n, of partially entangled
pairs of qubits, then it is possible for them to concentrate these pairs into
some smaller number of maximally entangled states. We present a simplified
version of the algorithm for such entanglement concentration, and we describe
efficient networks for implementing these operations.Comment: 15 pages, 2 figure
Restrictions on Transversal Encoded Quantum Gate Sets
Transversal gates play an important role in the theory of fault-tolerant
quantum computation due to their simplicity and robustness to noise. By
definition, transversal operators do not couple physical subsystems within the
same code block. Consequently, such operators do not spread errors within code
blocks and are, therefore, fault tolerant. Nonetheless, other methods of
ensuring fault tolerance are required, as it is invariably the case that some
encoded gates cannot be implemented transversally. This observation has led to
a long-standing conjecture that transversal encoded gate sets cannot be
universal. Here we show that the ability of a quantum code to detect an
arbitrary error on any single physical subsystem is incompatible with the
existence of a universal, transversal encoded gate set for the code.Comment: 4 pages, v2: minor change
From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth
Very preterm (VPT) infants admitted to Neonatal Intensive Care Unit (NICU) are at risk for altered brain growth and less-than-optimal socio-emotional development. Recent research suggests that early NICU-related stress contributes to socio-emotional impairments in VPT infants at 3 months through epigenetic regulation (i.e., DNA methylation) of the serotonin transporter gene (SLC6A4). In the present longitudinal study we assessed: (a) the effects of NICU-related stress and SLC6A4 methylation variations from birth to discharge on brain development at term equivalent age (TEA); (b) the association between brain volume at TEA and socio-emotional development (i.e., Personal-Social scale of Griffith Mental Development Scales, GMDS) at 12 months corrected age (CA). Twenty-four infants had complete data at 12-month-age. SLC6A4 methylation was measured at a specific CpG previously associated with NICU-related stress and socio-emotional stress. Findings confirmed that higher NICU-related stress associated with greater increase of SLC6A4 methylation at NICU discharge. Moreover, higher SLC6A4 discharge methylation was associated with reduced anterior temporal lobe (ATL) volume at TEA, which in turn was significantly associated with less-than-optimal GMDS Personal-Social scale score at 12 months CA. The reduced ATL volume at TEA mediated the pathway linking stress-related increase in SLC6A4 methylation at NICU discharge and socio-emotional development at 12 months CA. These findings suggest that early adversity-related epigenetic changes might contribute to the long-lasting programming of socio-emotional development in VPT infants through epigenetic regulation and structural modifications of the developing brain
- …
