The continuous-time query model is a variant of the discrete query model in
which queries can be interleaved with known operations (called "driving
operations") continuously in time. Interesting algorithms have been discovered
in this model, such as an algorithm for evaluating nand trees more efficiently
than any classical algorithm. Subsequent work has shown that there also exists
an efficient algorithm for nand trees in the discrete query model; however,
there is no efficient conversion known for continuous-time query algorithms for
arbitrary problems.
We show that any quantum algorithm in the continuous-time query model whose
total query time is T can be simulated by a quantum algorithm in the discrete
query model that makes O[T log(T) / log(log(T))] queries. This is the first
upper bound that is independent of the driving operations (i.e., it holds even
if the norm of the driving Hamiltonian is very large). A corollary is that any
lower bound of T queries for a problem in the discrete-time query model
immediately carries over to a lower bound of \Omega[T log(log(T))/log (T)] in
the continuous-time query model.Comment: 12 pages, 6 fig