3,776 research outputs found

    A visual-display and storage device

    Get PDF
    Memory and display device uses cathodochromic material to store visual information and fast phosphor to recall information for display and electronic processing. Cathodochromic material changes color when bombarded with electrons, and is restored to its original color when exposed to light of appropiate wavelength

    Cathodochromic storage device

    Get PDF
    A memory and display device has been developed by combing a fast phosphor layer with a cathodochromic layer in a cathode ray tube. Images are stored as patterns of electron beam induced optical density in the cathodo-chromic material. The stored information is recovered by exciting the backing, fast phosphor layer with a constant current electron beam and detecting the emitted radiation which is modulated by absorption in the cathodochromic layer. The storage can be accomplished in one or more TV frames (1/30 sec each). More than 500 TV line resolution and close to 2:1 contrast ratio are possible. The information storage time in a dark environment is approximately 24 hours. A reconstituted (readout) electronic video signal can be generated continuously for times in excess of 10 minutes or periodically for several hours

    Star Forming Objects in the Tidal Tails of Compact Groups

    Get PDF
    A search for star forming objects belonging to tidal tails has been carried out in a sample of deep Halpha images of 16 compact groups of galaxies. A total of 36 objects with Halpha luminosity larger than 10^38 erg s-1 have been detected in five groups. The fraction of the total Halpha luminosity of their respective parent galaxies shown by the tidal objects is always below 5% except for the tidal features of HCG95, whose Halpha luminosity amounts to 65% of the total luminosity. Out of this 36 objects, 9 star forming tidal dwarf galaxy candidates have been finally identified on the basis of their projected distances to the nuclei of the parent galaxies and their total Halpha luminosities. Overall, the observed properties of the candidates resemble those previously reported for the so-called tidal dwarf galaxies.Comment: 5 gif figures. Accepted for publication in Astrophysical Journa

    Near-infrared photometry of isolated spirals with and without an AGN. I: The Data

    Get PDF
    We present infrared imaging data in the J and K' bands obtained for 18 active spiral galaxies, together with 11 non active galaxies taken as a control sample. All of them were chosen to satisfy well defined isolation criteria so that the observed properties are not related to gravitational interaction. For each object we give: the image in the K' band, the sharp-divided image (obtained by dividing the observed image by a filtered one), the difference image (obtained by subtracting a model to the observed one), the color J-K' image, the ellipticity and position angle profiles, the surface brightness profiles in J and K', their fits by bulge+disk models and the color gradient. We have found that four (one) active (control) galaxies previously classified as non-barred turn out to have bars when observed in the near-infrared. One of these four galaxies (UGC 1395) also harbours a secondary bar. For 15 (9 active, 6 control) out of 24 (14 active, 10 control) of the optically classified barred galaxies (SB or SX) we find that a secondary bar (or a disk, a lense or an elongated ring) is present. The work presented here is part of a large program (DEGAS) aimed at finding whether there are differences between active and non active galaxies in the properties of their central regions that could be connected with the onset of nuclear activity.Comment: Accepted for publication in Astronomy & Astrophysics Supplement Serie

    On the use of scaling relations for the Tolman test

    Get PDF
    The use of relations between structural parameters of early type galaxies to perform the Tolman test is reconsidered. Scaling relations such as the FP or the Kormendy relation, require the transformation from angular to metric sizes, to compare the relation at different z values. This transformation depends on the assumed world model: galaxies of a given angular size, at a given z, are larger (in kpc) in a non-expanding universe than in an expanding one. Furthermore, the luminosities of galaxies are expected to evolve with z in an expanding model. These effects are shown to conspire to reduce the difference between the predicted SB change with redshift in the expanding and non expanding cases. We find that the predictions for the visible photometric bands of the expanding models with passive luminosity evolution are very similar to those of the static model till z about 1, and therefore, the test cannot distinguish between the two world models. Recent good quality data are consistent with the predictions from both models. In the K-band, where the expected (model) luminosity evolutionary corrections are smaller, the differences between the xpanding and static models amount to about 0.4 (0.8) magnitudes at z = 0.4 (1). It is shown that, due to that small difference between the predictions in the covered z-range, and to the paucity and uncertainties of the relevant SB photometry, the existing K-band data is not adequate to distinguish between the different world metrics, and cannot be yet used to discard the static case. It is pointed out that the scaling relations could still be used to rule out the non-evolving case if it could be shown that the coefficients change with the redshift.Comment: Latex, 15 pages with 2 figures. To be published in ApJ Letter

    Quasars Clustering at z approx 3 on Scales less sim 10 h^{-1} Mpc

    Full text link
    We test the hypothesis whether high redshift QSOs would preferentially appear in small groups or pairs, and if they are associated with massive, young clusters. We carried out a photometric search for \Ly emitters on scales 10h1\lesssim 10 h^{-1} Mpc, in the fields of a sample of 47 z3z\approx3 known QSOs. Wide and narrow band filter color-magnitude diagrams were generated for each of the 6.6×6.66'.6\times6'.6 fields. A total of 13 non resolved objects with a significant color excess were detected as QSO candidates at a redshift similar to that of the target. All the candidates are significantly fainter than the reference QSOs, with only 2 of them within 2 magnitudes of the central object. Follow-up spectroscopic observations have shown that 5, i.e., about 40% of the candidates, are QSOs at the same redshift of the target; 4 are QSOs at different z (two of them probably being a lensed pair at z = 1.47); 2 candidates are unresolved HII galaxies at z\sim0.3; one unclassified and one candidate turned out to be a CCD flaw. These data indicate that at least 10% of the QSOs at z\sim3 do have companions. We have also detected a number of resolved, rather bright \Ly Emitter Candidates. Most probably a large fraction of them might be bright galaxies with [OII] emission, at z\approx 0.3. The fainter population of our candidates corresponds to the current expectations. Thus, there are no strong indication for the existence of an overdensity of \Ly galaxies brighter than m \approx 25 around QSOs at zz\approx 3.Comment: 29 pages, 8 figures, tar gzip LaTex file, accepted to appear in Ap

    Modeling TiO2/UV–vis bacterial inactivation: Useful tools for reactor optimization and design

    Get PDF
    Heterogeneous photocatalysis applying TiO2 based catalysts has been widely studied for removing inorganic and organic compounds from water and for bacterial inactivation. This available and low-cost catalyst has demonstrated to be effective in the removal of organic pollutants and inactivation of pathogenic bacteria from water. The design of proper types of industrial-scale photoreactors has not been yet successfully implemented, probably due to the conceptual complexity of modeling this process in real wastewater. As a result, TiO2 based photocatalysis is still considered an effective but energetic-inefficient process. In this work, Escherichia coli (gram-positive) and Enterococcus sp (gram-negative) were selected for studying the kinetics of TiO2 photocatalysis. Since several approaches, such as fist-order kinetics, are not truly representative of the bacterial inactivation process, the experimental data were fitted to different mathematical models, such as Gompertz model, which has demonstrated to describe the process properly. Moreover, the effect of the main variables of the process in the inactivation kinetic constant of the Gompertz model has ben studied. More precisely, light intensity, water matrix, catalyst concentration and bacteria have been under study and their effect has been included in the kinetic equation. Finally, operational and construction parameters of a 20 m3/d annular photoreactor for bacterial inactivation has been successfully optimized applying the proposed kinetic model
    corecore