12 research outputs found

    Homologous-pairing Activity of the Bacillus subtilis bacteriophage SPP1 Replication Protein G35P

    No full text
    Genetic evidence suggests that the SPP1-encoded gene 35 product (G35P) is essential for phage DNA replication. Purified G35P binds single-strand DNA (ssDNA) and double-strand (dsDNA) and specifically interacts with SPP1-encoded replicative DNA helicase G40P and SSB protein G36P. G35P promotes joint molecule formation between a circular ssDNA and a homologous linear dsDNA with an ssDNA tail. Joint molecule formation requires a metal ion but is independent of a nucleotide cofactor. Joint molecules formed during these reactions contain a displaced linear ssDNA strand. Electron microscopic analysis shows that G35P forms a multimeric ring structure in ssDNA tails of dsDNA molecules and left-handed filaments on ssDNA. G35P promotes strand annealing at the AT-rich region of SPP1 oriL on a supercoiled template. These results altogether are consistent with the hypothesis that the homologous pairing catalyzed by G35P is an integral part of SPP1 DNA replication. The loading of G40P at a D-loop (ori DNA or at any stalled replication fork) by G35P could lead to replication fork reactivation

    Transgenically Expressed T-Rep of Tomato Yellow Leaf Curl Sardinia Virus Acts as a trans-Dominant-Negative Mutant, Inhibiting Viral Transcription and Replication

    No full text
    We have previously shown that transgenic expression of a truncated C1 gene of Tomato yellow leaf curl Sardinia virus (TYLCSV), expressing the first 210 amino acids of the replication-associated protein (T-Rep) and potentially coexpressing the C4 protein, confers resistance to the homologous virus in Nicotiana benthamiana plants. In the present study we have investigated the role of T-Rep and C4 proteins in the resistance mechanism, analyzing changes in virus transcription and replication. Transgenic plants and protoplasts were challenged with TYLCSV and the related TYLCSV Murcia strain (TYLCSV-ES[1]). TYLCSV-resistant plants were susceptible to TYLCSV-ES[1]; moreover, TYLCSV but not TYLCSV-ES[1] replication was strongly inhibited in transgenic protoplasts as well as in wild-type (wt) protoplasts transiently expressing T-Rep but not the C4 protein. Viral circular single-stranded DNA (cssDNA) was usually undetectable in transgenically and transiently T-Rep-expressing protoplasts, while viral DNAs migrating more slowly than the cssDNA were observed. Biochemical studies showed that these DNAs were partial duplexes with the minus strand incomplete. Interestingly, similar viral DNA forms were also found at early stages of TYLCSV replication in wt N. benthamiana protoplasts. Transgenically expressed T-Rep repressed the transcription of the GUS reporter gene up to 300-fold when fused to the homologous (TYLCSV) but not to the heterologous (TYLCSV-ES[1]) C1 promoter. Similarly, transiently expressed T-Rep but not C4 protein strongly repressed GUS transcription when fused to the C1 promoter of TYLCSV. A model of T-Rep interference with TYLCSV transcription-replication is proposed

    A three-nucleotide mutation altering the Maize streak virus Rep pRBR-interaction motif reduces symptom severity in maize and partially reverts at high frequency without restoring pRBR-Rep binding

    No full text
    Geminivirus infectivity is thought to depend on interactions between the virus replication-associated proteins Rep or RepA and host retinoblastoma-related proteins (pRBR), which control cell-cycle progression. It was determined that the substitution of two amino acids in the Maize streak virus (MSV) RepA pRBR-interaction motif (LLCNE to LLCLK) abolished detectable RepA-pRBR interaction in yeast without abolishing infectivity in maize. Although the mutant virus was infectious in maize, it induced less severe symptoms than the wild-type virus. Sequence analysis of progeny viral DNA isolated from infected maize enabled detection of a high-frequency single-nucleotide reversion of C(601)A in the 3 nt mutated sequence of the Rep gene. Although it did not restore RepA-pRBR interaction in yeast, sequence-specific PCR showed that, in five out of eight plants, the C(601)A reversion appeared by day 10 post-inoculation. In all plants, the C(601)A revertant eventually completely replaced the original mutant population, indicating a high selection pressure for the single-nucleotide reversion. Apart from potentially revealing an alternative or possibly additional function for the stretch of DNA that encodes the apparently non-essential pRBR-interaction motif of MSV Rep, the consistent emergence and eventual dominance of the C(601)A revertant population might provide a useful tool for investigating aspects of MSV biology, such as replication, mutation and evolution rates, and complex population phenomena, such as competition between quasispecies and population turnover. © 2005 SGM
    corecore