2,912 research outputs found
Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Supplement, Appendix 4.3: Candidate ARAMIS Capabilities
Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks
Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview
Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS
Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 2: Telepresence project applications
The field of telepresence is defined and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA' plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included
Space applications of Automation, Robotics And Machine Intelligence Systems (ARAMIS). Volume 3, phase 2: Executive summary
The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program leading to an operational telepresence servicer is presented
Theory of spike timing based neural classifiers
We study the computational capacity of a model neuron, the Tempotron, which
classifies sequences of spikes by linear-threshold operations. We use
statistical mechanics and extreme value theory to derive the capacity of the
system in random classification tasks. In contrast to its static analog, the
Perceptron, the Tempotron's solutions space consists of a large number of small
clusters of weight vectors. The capacity of the system per synapse is finite in
the large size limit and weakly diverges with the stimulus duration relative to
the membrane and synaptic time constants.Comment: 4 page, 4 figures, Accepted to Physical Review Letters on 19th Oct.
201
Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary
Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks
Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 3: ARAMIS overview
An overview of automation, robotics, and machine intelligence systems (ARAMIS) is provided. Man machine interfaces, classification, and capabilities are considered
Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 1: Telepresence technology base development
The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program is presented, leading to an operational telepresence servicer
Quantum matchgate computations and linear threshold gates
The theory of matchgates is of interest in various areas in physics and
computer science. Matchgates occur in e.g. the study of fermions and spin
chains, in the theory of holographic algorithms and in several recent works in
quantum computation. In this paper we completely characterize the class of
boolean functions computable by unitary two-qubit matchgate circuits with some
probability of success. We show that this class precisely coincides with that
of the linear threshold gates. The latter is a fundamental family which appears
in several fields, such as the study of neural networks. Using the above
characterization, we further show that the power of matchgate circuits is
surprisingly trivial in those cases where the computation is to succeed with
high probability. In particular, the only functions that are
matchgate-computable with success probability greater than 3/4 are functions
depending on only a single bit of the input
The Reach-Avoid Problem for Constant-Rate Multi-Mode Systems
A constant-rate multi-mode system is a hybrid system that can switch freely
among a finite set of modes, and whose dynamics is specified by a finite number
of real-valued variables with mode-dependent constant rates. Alur, Wojtczak,
and Trivedi have shown that reachability problems for constant-rate multi-mode
systems for open and convex safety sets can be solved in polynomial time. In
this paper, we study the reachability problem for non-convex state spaces and
show that this problem is in general undecidable. We recover decidability by
making certain assumptions about the safety set. We present a new algorithm to
solve this problem and compare its performance with the popular sampling based
algorithm rapidly-exploring random tree (RRT) as implemented in the Open Motion
Planning Library (OMPL).Comment: 26 page
- …
