160 research outputs found

    Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration

    Get PDF
    We experimentally demonstrated the scalability of the terahertz-wave parametric oscillator by using a pump beam with a wide aperture and a high pulse energy. Terahertz-wave absorption by the LiNbO3 crystal in the oscillator is substantially suppressed by employing a surface-emitting cavity configuration. We also improved the conversion efficiency by increasing the parametric interaction in the noncollinear phase-matching geometry. A pump depletion of 54% and a conversion efficiency of 0.9 Ɨ 10-6 are achieved. A maximum terahertz output of 382 nJ/pulse was achieved at 1.46 THz using a 8.0-mm-diameter pump beam with a pulse energy of 465 mJ/pulse

    Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously we reported 1 Ī¼M synthetic human amyloid beta<sub>1-42 </sub>oligomers induced cofilin dephosphorylation (activation) and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus.</p> <p>Results</p> <p>Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human AĪ² dimers and trimers (AĪ²d/t) induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human AĪ² oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent AĪ²<sub>1-42</sub>, the latter lacking tyrosine, acquires a marked increase (620 fold for EC<sub>50</sub>) in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 AĪ²d/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state), lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing AĪ² monomers are not active, suggesting oxidized SDS-stable AĪ²<sub>1-42 </sub>dimers in a low-n state are the most active rod-inducing species. AĪ²d/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after AĪ²d/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with AĪ²d/t, whereas overexpression of a cofilin kinase inhibits AĪ²d/t-induced rod formation.</p> <p>Conclusions</p> <p>Together these data support a mechanism by which AĪ²d/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.</p

    Effect of hyperbaric oxygen on mesenchymal stem cells for lumbar fusion in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen (HBO) therapy has been proved in improving bone healing, but its effects on mesenchymal stem cells (MSCs) <it>in vivo </it>is not clear. The aims of this study are to clarify whether the HBO therapy has the same enhancing effect on MSCs with regard to bone formation and maturation and to ascertain whether the transplanted MSCs survive in the grafted area and contribute to new bone formation.</p> <p>Methods</p> <p>Twenty-three adult rabbits underwent posterolateral fusion at L4-L5 level. The animals were divided into three groups according to the material implanted and subsequent treatment: (1) Alginate carrier (n = 6); (2) Alginate-MSCs composite (n = 11); and (3) Alginate-MSCs composite with HBO therapy (n = 6). After 12 weeks, spine fusion was examined using radiographic examination, manual testing, and histological examination. Using a PKH fluorescence labeling system, whether the transplanted MSCs survived and contributed to new bone formation in the grafted area after HBO therapy was also examined.</p> <p>Results</p> <p>The bilateral fusion areas in each animal were evaluated independently. By radiographic examination and manual palpation, union for the Alginate, Alginate-MSCs, and Alginate-MSCs-HBO groups was 0 of 12, 10 of 22, and 6 of 12 respectively. The difference between the Alginate-MSCs and Alginate-MSCs-HBO groups was not significant (P = 0.7997). The fluorescence microscopy histological analysis indicated that the transplanted PKH67-labeled MSCs survived and partly contributed to new bone formation in the grafted area.</p> <p>Conclusions</p> <p>This study demonstrated that the preconditioned MSCs could survive and yield bone formation in the grafted area. HBO therapy did not enhance the osteogenic ability of MSCs and improve the success of spine fusion in the rabbit model. Although there was no significant effect of HBO therapy on MSCs for spine fusion, the study encourages us to research a more basic approach for determining the optimal oxygen tension and pressure that are required to maintain and enhance the osteogenic ability of preconditioned MSCs. Further controlled <it>in vivo </it>and <it>in vitro </it>studies are required for achieving a better understanding of the effect of HBO treatment on MSCs.</p

    Rapid Changes in Phospho-MAP/Tau Epitopes during Neuronal Stress: Cofilin-Actin Rods Primarily Recruit Microtubule Binding Domain Epitopes

    Get PDF
    Abnormal mitochondrial function is a widely reported contributor to neurodegenerative disease including Alzheimer's disease (AD), however, a mechanistic link between mitochondrial dysfunction and the initiation of neuropathology remains elusive. In AD, one of the earliest hallmark pathologies is neuropil threads comprising accumulated hyperphosphorylated microtubule-associated protein (MAP) tau in neurites. Rod-like aggregates of actin and its associated protein cofilin (AC rods) also occur in AD. Using a series of antibodies - AT270, AT8, AT100, S214, AT180, 12E8, S396, S404 and S422 - raised against different phosphoepitopes on tau, we characterize the pattern of expression and re-distribution in neurites of these phosphoepitope labels during mitochondrial inhibition. Employing chick primary neuron cultures, we demonstrate that epitopes recognized by the monoclonal antibody 12E8, are the only species rapidly recruited into AC rods. These results were recapitulated with the actin depolymerizing drug Latrunculin B, which induces AC rods and a concomitant increase in the 12E8 signal measured on Western blot. This suggests that AC rods may be one way in which MAP redistribution and phosphorylation is influenced in neurons during mitochondrial stress and potentially in the early pathogenesis of AD

    Molecular mechanisms of extracellular adenine nucleotides-mediated inhibition of human Cd4+ T lymphocytes activation

    Get PDF
    We have previously reported that ATPĪ³S, a slowly hydrolyzed analog of ATP, inhibits the activation of human CD4+ T lymphocytes by anti-CD3 and anti-CD28Ā mAb. In this report we have partially characterized the signaling mechanisms involved in this immunosuppressive effect. ATPĪ³S had no inhibitory effect on CD4+ T-cell activation induced by PMA and anti-CD28, indicating that it acts proximally to the TCR. It had no effect on the calcium rise induced by CD3/CD28 stimulation, but inhibited the phosphorylation of three kinases, ERK2, p38 MAPK and PKB, that play a key role in the activation of T cells. The receptor involved in these actions remains unidentified

    Telerobotic Pointing Gestures Shape Human Spatial Cognition

    Full text link
    This paper aimed to explore whether human beings can understand gestures produced by telepresence robots. If it were the case, they can derive meaning conveyed in telerobotic gestures when processing spatial information. We conducted two experiments over Skype in the present study. Participants were presented with a robotic interface that had arms, which were teleoperated by an experimenter. The robot could point to virtual locations that represented certain entities. In Experiment 1, the experimenter described spatial locations of fictitious objects sequentially in two conditions: speech condition (SO, verbal descriptions clearly indicated the spatial layout) and speech and gesture condition (SR, verbal descriptions were ambiguous but accompanied by robotic pointing gestures). Participants were then asked to recall the objects' spatial locations. We found that the number of spatial locations recalled in the SR condition was on par with that in the SO condition, suggesting that telerobotic pointing gestures compensated ambiguous speech during the process of spatial information. In Experiment 2, the experimenter described spatial locations non-sequentially in the SR and SO conditions. Surprisingly, the number of spatial locations recalled in the SR condition was even higher than that in the SO condition, suggesting that telerobotic pointing gestures were more powerful than speech in conveying spatial information when information was presented in an unpredictable order. The findings provide evidence that human beings are able to comprehend telerobotic gestures, and importantly, integrate these gestures with co-occurring speech. This work promotes engaging remote collaboration among humans through a robot intermediary.Comment: 27 pages, 7 figure

    Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease

    Get PDF
    Huntington's disease (HD) is caused by an expanded CAG tract in the Interesting transcript 15 (IT15) gene encoding the 350 kDa huntingtin protein. Cellular stresses can trigger the release of huntingtin from the endoplasmic reticulum, allowing huntingtin nuclear entry. Here, we show that endogenous, full-length huntingtin localizes to nuclear cofilinā€“actin rods during stress and is required for the proper stress response involving actin remodeling. Mutant huntingtin induces a dominant, persistent nuclear rod phenotype similar to that described in Alzheimer's disease for cytoplasmic cofilinā€“actin rods. Using live cell temporal studies, we show that this stress response is similarly impaired when mutant huntingtin is present, or when normal huntingtin levels are reduced. In clinical lymphocyte samples from HD patients, we have quantitatively detected cross-linked complexes of actin and cofilin with complex formation varying in correlation with disease progression. By live cell fluorescence lifetime imaging measurementā€“Fƶrster resonant energy transfer studies and western blot assays, we quantitatively observed that stress-activated tissue transglutaminase 2 (TG2) is responsible for the actinā€“cofilin covalent cross-linking observed in HD. These data support a direct role for huntingtin in nuclear actin re-organization, and describe a new pathogenic mechanism for aberrant TG2 enzymatic hyperactivity in neurodegenerative diseases

    The Actin-Binding Protein Capulet Genetically Interacts with the Microtubule Motor Kinesin to Maintain Neuronal Dendrite Homeostasis

    Get PDF
    BACKGROUND: Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE: The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease
    • ā€¦
    corecore