244 research outputs found

    Estimated Cash Receipts by Ohio Farmers From the Sale of Agricultural Products and From Government Payments, by Counties - 1953

    Get PDF

    Estimated Cash Receipts by Ohio Farmers From the Sale of Agricultural Products and From Government Payments, by Counties - 1952

    Get PDF

    Apographs of lost codex r for Demosthenis in Timocratem

    Get PDF
    The study of the five apographs of the lost codex r is still partial. It can be shown that the scholia in R, Fi, Vf, Mk, Lb come down from r. Discussion on the sources of r and an inquiry about its readings. This lost ms. was probably copied during the Paleologean age. The scholia in Vf, Mk and Lb were copied from still extant mss. And R and Fi, although they are the first copies of r, are useless to establish a new text of the scholia on Demosthenes’ Or. 24

    Ohio agricultural statistics, 1953 and 1954

    Get PDF

    Induced color in ostracode shells: an experimental study

    Get PDF
    10 p., 1 fig.http://paleo.ku.edu/contributions.htm

    Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain

    Get PDF
    Ape1 is a molecule with dual functions in DNA repair and redox regulation of transcription factors. In Ape1-deficient mice, embryos do not survive beyond embryonic day 9, indicating that this molecule is required for normal embryo development. Currently, direct evidence of the role of Ape1 in regulating hematopoiesis is lacking. We used the embryonic stem (ES) cell differentiation system and an siRNA approach to knockdown Ape1 gene expression to test the role of Ape1 in hematopoiesis. Hemangioblast development from ES cells was reduced 2- to 3-fold when Ape1 gene expression was knocked down by Ape1-specific siRNA, as was primitive and definitive hematopoiesis. Impaired hematopoiesis was not associated with increased apoptosis in siRNA-treated cells. To begin to explore the mechanism whereby Ape1 regulates hematopoiesis, we found that inhibition of the redox activity of Ape1 with E3330, a specific Ape1 redox inhibitor, but not Ape1 DNA repair activity, which was blocked using the small molecule methoxyamine, affected cytokine-mediated hemangioblast development in vitro. In summary, these data indicate Ape1 is required in normal embryonic hematopoiesis and that the redox function, but not the repair endonuclease activity, of Ape1 is critical in normal embryonic hematopoietic development

    Emergent Endotracheal Intubation and Mortality in Traumatic Brain Injury

    Get PDF
    Objective: To determine the relationship between emergent intubation (emergency department and field intubation cases combined) and mortality in patients with traumatic brain injury (TBI) while controlling for injury severity.Methods: Retrospective observational study of 981 (35.2% intubated, 64.8% not intubated) patients with TBI evaluating the association between intubation status and mortality. Logistic regression was used to analyze the data. Injury severity measures included Head/Neck Abbreviated Injury Scale (H-AIS), systolic blood pressure, type of head injury (blunt vs. penetrating), and a propensity score combining the effects of several other potential confounding variables. Age was also included in the model.Results: The simple association of emergent endotracheal intubation with death had an odds ratio (OR) of 14.3 (95% CI = 9.4 – 21.9). The logistic regression model including relevant covariates and a propensity score that adjusted for injury severity and age yielded an OR of 5.9 (95% CI = 3.2 – 10.9).Conclusions: This study indicates that emergent intubation is associated with increased risk of death after controlling for a number of injury severity indicators. We discuss the need for optimal paramedic training, and an understanding of the factors that guide patient selection and the decision to intubate in the field. [WestJEM.2008;9:184-189

    Human Mesenchymal Stromal Cells Decrease Mortality Following Intestinal Ischemia and Reperfusion Injury

    Get PDF
    Background Cellular therapy is a novel treatment option for intestinal ischemia. Bone marrow–derived mesenchymal stromal cells (BMSCs) have previously been shown to abate the damage caused by intestinal ischemia/reperfusion (I/R) injury. We therefore hypothesized that (1) human BMSCs (hBMSCs) would produce more beneficial growth factors and lower levels of proinflammatory mediators compared to differentiated cells, (2) direct application of hBMSCs to ischemic intestine would decrease mortality after injury, and (3) decreased mortality would be associated with an altered intestinal and hepatic inflammatory response. Methods Adult hBMSCs and keratinocytes were cultured on polystyrene flasks. For in vitro experiments, cells were exposed to tumor necrosis factor, lipopolysaccharides, or 2% oxygen for 24 h. Supernatants were then analyzed for growth factors and chemokines by multiplex assay. For in vivo experiments, 8- to 12-wk-old male C57Bl6J mice were anesthetized and underwent a midline laparotomy. Experimental groups were exposed to temporary superior mesenteric artery occlusion for 60 min. Immediately after ischemia, 2 × 106 hBMSCs or keratinocytes in phosphate-buffered saline were placed into the peritoneal cavity. Animals were then closed and allowed to recover for 6 h (molecular/histologic analysis) or 7 d (survival analysis). After 6-h reperfusion, animals were euthanized. Intestines and livers were harvested and analyzed for inflammatory chemokines, growth factors, and histologic changes. Results hBMSCs expressed higher levels of human interleukin (IL) 6, IL-8, vascular endothelial growth factor (VEGF), and epidermal growth factor and lower levels of IL-1, IL-3, IL-7, and granulocyte-monocyte colony-stimulating factor after stimulation. In vivo, I/R resulted in significant mortality (70% mortality), whereas application of hBMSCs after ischemia decreased mortality to 10% in a dose-dependent fashion (P = 0.004). Keratinocyte therapy offered no improvements in mortality above I/R. Histologic profiles were equivalent between ischemic groups, regardless of the application of hBMSCs or keratinocytes. Cellular therapy yielded significantly decreased murine intestinal levels of soluble activin receptor-like kinase 1, betacellulin, and endothelin, whereas increasing levels of eotaxin, monokine induced by gamma interferon (MIG), monocyte chemoattractant protein 1, IL-6, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein 10 (IP-10) from ischemia were appreciated. hBMSC therapy yielded significantly higher expression of murine intestinal VEGF and lower levels of intestinal MIG compared to keratinocyte therapy. Application of hBMSCs after ischemia yielded significantly lower murine levels of hepatic MIG, IP-10, and G-CSF compared to keratinocyte therapy. Conclusions Human BMSCs produce multiple beneficial growth factors. Direct application of hBMSCs to the peritoneal cavity after intestinal I/R decreased mortality by 60%. Improved outcomes with hBMSC therapy were not associated with improved histologic profiles in this model. hBMSC therapy was associated with higher VEGF in intestines and lower levels of proinflammtory MIG, IP-10, and G-CSF in liver tissue after ischemia, suggesting that reperfusion with hBMSC therapy may alter survival by modulating the systemic inflammatory response to ischemia

    Angiopoietin-like protein 2 regulates endothelial colony forming cell vasculogenesis

    Get PDF
    Angiopoietin-like 2 (ANGPTL2) has been reported to induce sprouting angiogenesis; however, its role in vasculogenesis, the de novo lumenization of endothelial cells (EC), remains unexplored. We sought to investigate the potential role of ANGPTL2 in regulating human cord blood derived endothelial colony forming cell (ECFC) vasculogenesis through siRNA mediated inhibition of ANGPTL2 gene expression. We found that ECFCs in which ANGPTL2 was diminished displayed a threefold decrease in in vitro lumenal area whereas addition of exogenous ANGPTL2 protein domains to ECFCs lead to increased lumen formation within a 3 dimensional (3D) collagen assay of vasculogenesis. ECFC migration was attenuated by 36 % via ANGPTL2 knockdown (KD) although proliferation and apoptosis were not affected. We subsequently found that c-Jun NH2-terminal kinase (JNK), but not ERK1/2, phosphorylation was decreased upon ANGPTL2 KD, and expression of membrane type 1 matrix metalloproteinase (MT1-MMP), known to be regulated by JNK and a critical regulator of EC migration and 3D lumen formation, was decreased in lumenized structures in vitro derived from ANGPTL2 silenced ECFCs. Treatment of ECFCs in 3D collagen matrices with either a JNK inhibitor or exogenous rhTIMP-3 (an inhibitor of MT1-MMP activity) resulted in a similar phenotype of decreased vascular lumen formation as observed with ANGPTL2 KD, whereas stimulation of JNK activity increased vasculogenesis. Based on gene silencing, pharmacologic, cellular, and biochemical approaches, we conclude that ANGPTL2 positively regulates ECFC vascular lumen formation likely through its effects on migration and in part by activating JNK and increasing MT1-MMP expression
    • …
    corecore