77 research outputs found
Remotely actuated localized pressure and heat apparatus and method of use
Apparatus and method for the use of a remotely actuated localized pressure and heat apparatus for the consolidation and curing of fiber elements in, structures. The apparatus includes members for clamping the desired portion of the fiber elements to be joined, pressure members and/or heat members. The method is directed to the application and use of the apparatus
CFD Results for an Axisymmetric Isentropic Relaxed Compression Inlet
The OVERFLOW code was used to calculate the flow field for a family of five relaxed compression inlets, which were part of a screening study to determine a configuration most suited to the application of microscale flow control technology as a replacement for bleed. Comparisons are made to experimental data collected for each of the inlets in the 1- by 1-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center (GRC) to help determine the suitability of computational fluid dynamics (CFD) as a tool for future studies of these inlets with flow control devices. Effects on the wind tunnel results of the struts present in a high subsonic flow region accounted for most of the inconsistency between the results. Based on the level of agreement in the present study, it is expected that CFD can be used as a tool to aid in the design of a study of this class of inlets with flow control
GeoFRESH – an online platform for freshwater geospatial data processing
Freshwater ecosystems are characterized by their unique longitudinal and lateral habitat connectivity. As a result, spatial units in freshwater-specific analyses can often not be considered independent of each other. Accounting for this connectivity in modelling analyses requires advanced skills in Geographic Information Systems (GIS) for adequately processing and managing the data. To address this challenge, we developed the GeoFRESH online platform, which is available at https://geofresh.org. The platform provides a graphical, easy-to-use interface to create freshwater-specific analysis-ready data for any given location in the world, based on a high-resolution stream network (https://hydrography.org/hydrography90m/hydrography90m_layers). Users can (i) upload and visualize point coordinates, (ii) automatically assign points to the closest stream network segment, (iii) annotate the point data with a suite of 104 local and/or upstream-aggregated topographic, climatic, land-cover and soil variables, (iv) visualize summary plots, and (v) download the data in csv-format for further analyses. The platform can be expanded given its modular structure and it can serve as a key element to support freshwater science and management relying on high-resolution geospatial analyses. GeoFRESH provides a low-entry interface while being complementary to the hydrographr R-package, and contributes importantly to the re-usability of data as an important aspect of the FAIR principles
Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes
<p>Abstract</p> <p>Background</p> <p>Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other <it>Populus </it>species.</p> <p>Results</p> <p>Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought.</p> <p>Conclusions</p> <p>In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.</p
Breastfeeding: making the difference in the development, health and nutrition of term and preterm newborns
- …
