2,499 research outputs found
Non-linear Weibel-type Soliton Modes
Discussion is given of non-linear soliton behavior including coupling between
electrostatic and electromagnetic potentials for non-relativistic, weakly
relativistic, and fully relativistic plasmas. For plasma distribution functions
that are independent of the canonical momenta perpendicular to the soliton
spatial structure direction there are, in fact, no soliton behaviors allowed
because transverse currents are zero. Dependence on the transverse canonical
momenta is necessary. When such is the case, it is shown that the presence or
absence of a soliton is intimately connected to the functional form assumed for
the particle distribution functions. Except for simple situations, the coupled
non-linear equations for the electrostatic and electromagnetic potentials would
seem to require numerical solution procedures. Examples are given to illustrate
all of these points for non-relativistic, weakly relativistic, and fully
relativistic plasmas.Comment: Accepted for publication at Journal of Physics A: Mathematical and
Theoretica
MEMS-Based Terahertz Photoacoustic Chemical Sensing System
Advancements in microelectromechanical system (MEMS) technology over the last several decades has been a driving force behind miniaturizing and improving sensor designs. In this work, a specialized cantilever pressure sensor was designed, modeled, and fabricated to investigate the photoacoustic (PA) response of gases to terahertz (THz) radiation under low-vacuum conditions associated with high-resolution spectroscopy. Microfabricated cantilever devices made using silicon-on-insulator (SOI) wafers were tested in a custom-built test chamber in this first ever demonstration of a cantilever-based PA chemical sensor and spectroscopy system in the THz frequency regime. The THz radiation source was amplitude modulated to excite acoustic waves in the chamber, and PA molecular spectroscopy of a gas species was performed. An optical measurement technique was used to evaluate the PA effect on the cantilever sensor; a laser beam was reflected off the cantilever tip and through an iris to a photodiode. As the cantilever movement deflected the laser beam, the beam was clipped by an iris and generated the PA signal. Experimental data indicated a predominantly linear response in signal amplitude from the photodiode measurement technique, which directly correlated to measured cantilever deflections. Using the custom-designed PA chamber and MEMS cantilever sensor, excellent low-pressure PA spectral data of methyl cyanide (CH3CN) at 2 to 40 mTorr range has been obtained. At low chamber pressures, the sensitivity of our system was 1.97 × 10−5 cm−1 and had an excellent normalized noise equivalent absorption (NNEA) coefficient of 1.39 × 10−9 cm−1 W Hz-½ using a 0.5 s signal averaging time
Disaggregating non-volatile memory for throughput-oriented genomics workloads
Massive exploitation of next-generation sequencing technologies requires dealing with both: huge amounts of data and complex bioinformatics pipelines. Computing architectures have evolved to deal with these problems, enabling approaches that were unfeasible years ago: accelerators and Non-Volatile Memories (NVM) are becoming widely used to enhance the most demanding workloads. However, bioinformatics workloads are usually part of bigger pipelines with different and dynamic needs in terms of resources. The introduction of Software Defined Infrastructures (SDI) for data centers provides roots to dramatically increase the efficiency in the management of infrastructures. SDI enables new ways to structure hardware resources through disaggregation, and provides new hardware composability and sharing mechanisms to deploy workloads in more flexible ways. In this paper we study a state-of-the-art genomics application, SMUFIN, aiming to address the challenges of future HPC facilities.This work is partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitivity (TIN2015-65316-P) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft
Ion dynamics and acceleration in relativistic shocks
Ab-initio numerical study of collisionless shocks in electron-ion
unmagnetized plasmas is performed with fully relativistic particle in cell
simulations. The main properties of the shock are shown, focusing on the
implications for particle acceleration. Results from previous works with a
distinct numerical framework are recovered, including the shock structure and
the overall acceleration features. Particle tracking is then used to analyze in
detail the particle dynamics and the acceleration process. We observe an energy
growth in time that can be reproduced by a Fermi-like mechanism with a reduced
number of scatterings, in which the time between collisions increases as the
particle gains energy, and the average acceleration efficiency is not ideal.
The in depth analysis of the underlying physics is relevant to understand the
generation of high energy cosmic rays, the impact on the astrophysical shock
dynamics, and the consequent emission of radiation.Comment: 5 pages, 3 figure
Terahertz Photoacoustic Spectroscopy Using an MEMS Cantilever Sensor
In this paper, a microelectromechanical systems cantilever sensor was designed, modeled, and fabricated to measure the photoacoustic (PA) response of gases under very low vacuum conditions. The micromachined devices were fabricated using silicon-on-insulator wafers and then tested in a custom-built, miniature, vacuum chamber during this first-ever demonstration. Terahertz radiation was amplitude modulated to excite the gas under test and perform PA molecular spectroscopy. Experimental data show a predominantly linear response that directly correlates measured cantilever deflection to PA signals. Excellent low pressure (i.e., 2-40 mTorr) methyl cyanide PA spectral data were collected resulting in a system sensitivity of 1.97 × 10 -5 cm -1 and a normalized noise equivalent absorption coefficient of 1.39 × 10 -9 cm -1 W Hz -1/2
Cluster magnetic fields from large-scale-structure and galaxy-cluster shocks
The origin of the micro-Gauss magnetic fields in galaxy clusters is one of
the outstanding problem of modern cosmology. We have performed
three-dimensional particle-in-cell simulations of the nonrelativistic Weibel
instability in an electron-proton plasma, in conditions typical of cosmological
shocks. These simulations indicate that cluster fields could have been produced
by shocks propagating through the intergalactic medium during the formation of
large-scale structure or by shocks within the cluster. The strengths of the
shock-generated fields range from tens of nano-Gauss in the intercluster medium
to a few micro-Gauss inside galaxy clusters.Comment: 4 pages, 2 color figure
The theory of spectral evolution of the GRB prompt emission
We develop the theory of jitter radiation from GRB shocks containing
small-scale magnetic fields and propagating at an angle with respect to the
line of sight. We demonstrate that the spectra vary considerably: the
low-energy photon index, , ranges from 0 to -1 as the apparent viewing
angle goes from 0 to . Thus, we interpret the hard-to-soft evolution and
the correlation of with the photon flux observed in GRBs as a combined
effect of temporal variation of the viewing angle and relativistic aberration
of an individual thin, instantaneously illuminated shell. The model predicts
that about a quarter of time-resolved spectra should have hard spectra,
violating the synchrotron line of death. The model also naturally
explains why the peak of the distribution of is at .
The presence of a low-energy break in the jitter spectrum at oblique angles
also explains the appearance of a soft X-ray component in some GRBs and a
relatively small number of them. We emphasize that our theory is based solely
on the first principles and contains no {\it ad hoc} (phenomenological)
assumptions.Comment: 5 pages, 3 figures, accepted to Ap
High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme
First high-altitude observations of gravity wave (GW)-induced CO density
perturbations in the Martian thermosphere retrieved from NASA's NGIMS
instrument on board the MAVEN satellite are presented and interpreted using the
extended GW parameterization of Yi\u{g}it et al. [2008] and the Mars Climate
Database as an input. Observed relative density perturbations between 180-220
km of 20-40 % demonstrate appreciable local time, latitude, and altitude
variations. Modeling for the spatiotemporal conditions of the MAVEN
observations suggests that GWs can directly propagate from the lower atmosphere
to the thermosphere, produce appreciable dynamical effects, and likely
contribute to the observed fluctuations. Modeled effects are somewhat smaller
than the observed but their highly variable nature is in qualitative agreement
with observations. Possible reasons for discrepancies between modeling and
measurements are discussed.Comment: Accepted for publication in Geophysical Research Letters (GRL).
Special section: First Results from the MAVEN Mission to Mar
Hot Settling Accretion Flow onto a Spinning Black Hole
We study the structure and properties of hot MHD accretion onto a Kerr black
hole. In such a system, the hole is magnetically coupled to the inflowing gas
and exerts a torque onto the accretion flow. A hot settling flow can form
around the hole and transport the angular momentum outward, to the outer edge
of the flow. Unlike other hot flows, such as advection- and
convection-dominated flows and inflow-outflow solutions (ADAFs, CDAFs, and
ADIOS), the properties of the hot settling flow are determined by the spin of
the central black hole, but are insensitive to the mass accretion rate.
Therefore, it may be possible to identify rapidly spinning BHs simply from
their broad-band spectra.
Observationally, the hot settling flow around a Kerr hole is somewhat similar
to other hot flows in that they all have hard, power-law spectra and relatively
low luminosities. Thus, most black hole candidates in the low/hard and,
perhaps, intermediate X-ray state may potentially accrete via the hot settling
flow. However, a settling flow will be somewhat more luminous than
ADAFs/CDAFs/ADIOS, will exhibit high variability in X-rays, and may have
relativistic jets. This suggests that galactic microquasars and active galactic
nuclei may be powered by hot settling flows. We identify several galactic X-ray
sources as the best candidates.Comment: 7 pages, 1 figure. Submitted to Ap
- …