566 research outputs found
Extracting spectral density function of a binary composite without a-priori assumption
The spectral representation separates the contributions of geometrical
arrangement (topology) and intrinsic constituent properties in a composite. The
aim of paper is to present a numerical algorithm based on the Monte Carlo
integration and contrainted-least-squares methods to resolve the spectral
density function for a given system. The numerical method is verified by
comparing the results with those of Maxwell-Garnett effective permittivity
expression. Later, it is applied to a well-studied rock-and-brine system to
instruct its utility. The presented method yields significant microstructural
information in improving our understanding how microstructure influences the
macroscopic behaviour of composites without any intricate mathematics.Comment: 4 pages, 5 figures and 1 tabl
Ion and polymer dynamics in polymer electrolytes PPO-LiClO4: II. 2H and 7Li NMR stimulated-echo experiment
We use 2H NMR stimulated-echo spectroscopy to measure two-time correlation
functions characterizing the polymer segmental motion in polymer electrolytes
PPO-LiClO4 near the glass transition temperature Tg. To investigate effects of
the salt on the polymer dynamics, we compare results for different ether oxygen
to lithium ratios, namely, 6:1, 15:1, 30:1 and infinity. For all compositions,
we find nonexponential correlation functions, which can be described by a
Kohlrausch function. The mean correlation times show quantitatively that an
increase of the salt concentration results in a strong slowing down of the
segmental motion. Consistently, for the high 6:1 salt concentration, a high
apparent activation energy E_a=4.1eV characterizes the temperature dependence
of the mean correlation times at Tg < T< 1.1T_g, while smaller values E_a=2.5eV
are observed for moderate salt contents. The correlation functions are most
nonexponential for 15:1 PPO-LiClO4, whereas the stretching is reduced for
higher and lower salt concentrations. A similar dependence of the correlation
functions on the evolution time in the presence and in the absence of ions
indicates that addition of salt hardly affects the reorientational mechanism.
For all compositions, mean jump angles of about 15 degree characterize the
segmental reorientation. In addition, comparison of results from 2H and 7Li NMR
stimulated-echo experiments suggests a coupling of ion and polymer dynamics in
15:1 PPO-LiClO4.Comment: 14 pages, 12 figure
History Memorized and Recalled upon Glass Transition
The memory effect upon glassification is studied in the glass to rubber
transition of vulcanized rubber with the strain as a controlling parameter. A
phenomenological model is proposed taking the history of the temperature and
the strain into account, by which the experimental results are interpreted. The
data and the model demonstrate that the glassy state memorizes the time-course
of strain upon glassification, not as a single parameter but as the history
itself. The data also show that the effect of irreversible deformation in the
glassy state is beyond the scope of the present model.
Authors' remark: The title of the paper in the accepted version is above. The
title appeared in PRL is the one changed by a Senior Assistant Editor after
acceptance of the paper. The recovery of the title was rejected in the
correction process.Comment: 4 pages, 4 figure
Statistics for Clinical Research
The purpose of this paper is to make understandable the use of statistics in the field of medicine, and to introduce to the clinician some new methods of statistics for drawing some reasonable conclusions based on the meager data usually available. There is, after all, only one valid use of statistics: to enable oneself to make a personal decision based on the information available
Zooming In on the Progenitors of Superluminous Supernovae With the HST
We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the
host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including
11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the
superb angular resolution of HST, we characterize the galaxies' morphological
properties, sizes and star formation rate (SFR) densities. We determine the
supernova (SN) locations within the host galaxies through precise astrometric
matching, and measure physical and host-normalized offsets, as well as the SN
positions within the cumulative distribution of UV light pixel brightness. We
find that the host galaxies of H-poor SLSNe are irregular, compact dwarf
galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR
densities are high ( ~ 0.1 M_sun/yr/kpc^2), suggesting that SLSNe
form in overdense environments. Their locations trace the UV light of their
host galaxies, with a distribution intermediate between that of long-duration
gamma-ray bursts (LGRBs) (which are strongly clustered on the brightest regions
of their hosts) and a uniform distribution (characteristic of normal
core-collapse SNe), though cannot be statistically distinguished from either
with the current sample size. Taken together, this strengthens the picture that
SLSN progenitors require different conditions than those of ordinary
core-collapse SNe to form, and that they explode in broadly similar galaxies as
do LGRBs. If the tendency for SLSNe to be less clustered on the brightest
regions than are LGRBs is confirmed by a larger sample, this would indicate a
different, potentially lower-mass progenitor for SLSNe than LRGBs.Comment: ApJ in press; matches published version. Minor changes following
referee's comments; conclusions unchange
Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 years of the Pan-STARRS1 Survey
We present griz light curves of 146 spectroscopically confirmed Type Ia
Supernovae () discovered during the first 1.5 years of the
Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is
determined by a combination of on-site measurements of the instrument response
function and observations of spectrophotometric standard stars. We find that
the systematic uncertainties in the photometric system are currently 1.2\%
without accounting for the uncertainty in the HST Calspec definition of the AB
system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia
that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113
PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only SNe and
assuming a constant dark energy equation of state and flatness, yields
.
When combined with BAO+CMB(Planck)+, the analysis yields and including all
identified systematics (see also Scolnic et al. 2014). The value of is
inconsistent with the cosmological constant value of at the 2.3
level. Tension endures after removing either the BAO or the constraint,
though it is strongest when including the constraint. If we include WMAP9
CMB constraints instead of those from Planck, we find
, which diminishes the discord to . We
cannot conclude whether the tension with flat CDM is a feature of dark
energy, new physics, or a combination of chance and systematic errors. The full
Pan-STARRS1 supernova sample with 3 times as many SNe should provide
more conclusive results.Comment: 38 pages, 16 figures, 14 tables, ApJ in pres
Direct observation of molecular cooperativity near the glass transition
We describe direct observations of molecular cooperativity near the glass
transition in poly-vinyl-acetate (PVAc), through nanometer-scale probing of
dielectric fluctuations. Molecular clusters switched spontaneously between two
to four distinct configurations, producing complex random-telegraph-signals
(RTS). Analysis of the RTS and their power spectra shows that individual
clusters exhibit both transient dynamical heterogeneity and non-exponential
kinetics.Comment: 14 pages pdf, need Acrobat Reade
Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies
We present optical spectroscopy and optical/near-IR photometry of 31 host
galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events
from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range
0.1 < z < 1.6 and is the first comprehensive host galaxy study of this specific
subclass of cosmic explosions. Combining the multi-band photometry and
emission-line measurements, we determine the luminosities, stellar masses, star
formation rates and metallicities. We find that as a whole, the hosts of SLSNe
are a low-luminosity ( ~ -17.3 mag), low stellar mass ( ~ 2 x 10^8
M_sun) population, with a high median specific star formation rate ( ~ 2
Gyr^-1). The median metallicity of our spectroscopic sample is low, 12 +
log(O/H}) ~ 8.35 ~ 0.45 Z_sun, although at least one host galaxy has solar
metallicity. The host galaxies of H-poor SLSNe are statistically distinct from
the hosts of GOODS core-collapse SNe (which cover a similar redshift range),
but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in
terms of stellar mass, SFR, sSFR and metallicity. This result indicates that
the environmental causes leading to massive stars forming either SLSNe or LGRBs
are similar, and in particular that SLSNe are more effectively formed in low
metallicity environments. We speculate that the key ingredient is large core
angular momentum, leading to a rapidly-spinning magnetar in SLSNe and an
accreting black hole in LGRBs.Comment: ApJ in press; updated to match accepted version. Some additional data
added, discussion of selection effects expanded; conclusions unchanged. 22
pages in emulateapj forma
Autres pays, autres coeurs. Dietary patterns, risk factors and ischaemic heart disease in Belfast and Toulouse
- …
