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H e n r y Ford H o s p . M e d . Journa l 

V o l . 2 1 , N o . 3, 1973 

Statistics for Clinical Research 

W . R. M c C r u m , P h D * 

BE 

The purpose of this paper is to make under­
standable the use of statistics in the field of 
medicine, and to introduce to the clinician 
some new methods of statistics for drawing 
some reasonable conclusions based on the 
meager data usually available. There is, after 
all, only one valid use of statistics: to enable 
oneself to make a personal decision based 
on the information available. 

>EFORE introducing new methods 
of statistics, it is appropriate to explain 
why the old methods are not satisfac­
tory for use in clinical medical research. 
Most of the statistical procedures cur­
ren t l y used rely on a ma thema t i ca l 
m o d e l ca l led a " n o r m a l d i s t r i b u t i o n 
f u n c t i o n " . This f u n c t i o n is best 
described by its moments of which the 
mean and variance are the more com­
mon and useful. A number of methods 
of stat ist ical i n fe rence or hypothes is 
test ing are based on the use of these 
pa rame te rs . F u r t h e r m o r e , these 
me thods have been w ide l y used and 
have been given great credence in cl ini­
cal research . U n f o r t u n a t e l y , b o t h in 
t h e o r y and in p rac t i ca l a p p l i c a t i o n , 
these methods have litt le or no validity 
when used on clinical data. 

'Department of Neurosurgery and 
Neurology 

Address reprint requests to Dr. McCrum, c/o 
Henry Ford Hospital, 2799 W. Grand Blvd, 
Detroit, Ml. 48202 

It must be remembered tha t , when 
statistical in ference is used, induct ive 
reasoning matches a "real l i fe" situation 
to a fo rmal ized abstract mathemat ica l 
m o d e l . The va l i d i t y of t h e s ta t is t ica l 
inference, then , is only as good as the 
match b e t w e e n the " r e a l " and t h e 
"abstract" . This matching is at best an 
i n t u i t i v e j u d g m e n t by t h e i n d i v i d u a l 
w h o gathers the da ta . This in t u r n 
requires that the invest igator accept a 
n u m b e r of assump t i ons abou t t h e 
source of data. These assumptions are 
most di f f icul t to accept f rom a realistic 
v iewpoint . They require that the charac-
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terist ics under study have a p n o r i and 
repea ted p r o b a b i l i t i e s in the to ta l 
populat ion. To be true the characteristic 
under observation must be completely 
independent of any other characteristic 
that is no t u n d e r o b s e r v a t i o n . For 
example, if some physiologic funct ion is 
obse rved for a c o n t r o l sample and a 
treated sample of people, then either of 
two requirements must be met: 1) An 
a s s u m p t i o n must be made that t he 
physiologic funct ion has no relation to 
age, w e i g h t , sex, e tc . of t h e to ta l 
populat ion, or 2) the exact relationship 
of this funct ion to these characteristics 
must be known. Even more di f f icul t to 
accept is a necessary assumpt ion that 
the sample be a random one as def ined 
mathematically. In a more simple state­
ment , the d is t r ibu t ion func t ion of the 
sample must be the same as the dis­
t r ibut ion funct ion of the populat ion. By 
observation it is known that a sample of 
less than 30 data points never has a nor­
mal d i s t r i b u t i o n . The q u e s t i o n that 
always arises w i t h smal l samples is 
w h e t h e r the samp le , desp i te its non 
no rma l i t y , does indeed come f r om a 
normally distr ibuted populat ion. 

The simplest way to avoid the preced­
ing q u e s t i o n is to use " d i s t r i b u t i o n 
f r e e " statistics. A me thod of this k ind 
wi l l be discussed later. Another method 
is to assume that the populat ion has the 
same distr ibut ion as the sample and use 
that as the mathemat ica l m o d e l . This 
does not permit the use of conventional 
parametr ic statistics when the samples 
are less than 30 data points. 

When studying events in living sys­
tems it should not be expected that the 
distr ibut ion funct ions wou ld have nor­
ma l i t y . N o r m a l i t y requ i res tha t t h e 
biologic process remain stationary; that 
is, it must not change wi th t ime. Living 
systems are not stationary; they have a 
b i r t h , a g r o w t h p e r i o d , a ma tu ra t i on 
per iod, and a decay per iod. Some sys­
tems are characterized by an infant mor­

tality d is t r ibut ion, others by an old age 
survival f unc t i on and stil l o thers by a 
simple random decay process. None of 
these are normal distr ibut ions. But, they 
can be described by other distr ibut ion 
funct ions such as the exponent ial , the 
gamma, the l o g - n o r m a l , the ex t reme 
value, and others. 

Statistical methods are a very personal 
th ing. Regardless of what methods are 
used in statistical analysis or inference, 
they are only as valid as the user's belief 
in them. The only purpose of statistical 
inference is to enable the user to make 
a decision when the outcome has some 
doubt . Two tools are available to make 
tha t d e c i s i o n : 1) An i n t u i t i v e be l ie f 
based on past personal experience and 
2) a s tat is t ica l eva lua t i on of some 
specific data. The final decision wil l be 
based on a blending of these two tools. 
This b l end ing in to a dec is ion process 
can best be accomplished by a "sta­
tistical des ign" of the experiment. This 
design is really only a formal ized state 
of the steps to be taken in co l lec t ing 
data and arriving at a decision. 

Statistical Design 

The most impor tant requ i rement for 
the statistical design of an experiment is 
good common sense. The entire experi­
men t must be l o o k e d at w i t h p rope r 
perspective. What is the purpose of the 
research? What wi l l it cost in t ime and 
money? Are the possible rewards wor th 
the effort? What is the methodology to 
be used? The quest ions must f i rst be 
answered in an informal yet orderly and 
c o m m o n sense fash ion . Then a more 
r igorous approach to the design must 
be established. What is the purpose of 
the research? Here, we assume that w i th 
t oday ' s costs in t i m e and m o n e y , a 
research project does have a real pur­
pose, at least as far as the investigator 
is concerned. For a realistic pursuit of 
the research p r o b l e m , he must state 
that p r o b l e m in a conc ise , cons is tent 
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and somewhat r igid manner . Here we 
meet the concept of personal prob­
abi l i ty . The invest igator has met some 
p r o b l e m that cha l lenges h im and on 
which he has some personal views. He 
wishes to establ ish whe the r his ideas 
are right or wrong . The second require­
ment in a stat ist ical design t h e n , is a 
conc ise and p rope r s ta tement of the 
problem. 

The th i rd requirement is the formula­
t ion of a plan of ac t ion based on the 
results of the solut ion of the prob lem. 
This requirement is seldom met in med­
ical research and, if it is considered, it 
is usual ly on ly haphazard l y . W i t h 
today's economy and cost conscious­
ness about research, a project has little 
or no th ing to meri t its under tak ing if, 
when completed, it does not provide a 
def in i te decis ion about fur ther activity 
based on the results of the research. 
The pursuant act ion may be a s imp le 
decision to desist f rom further concern 
about the problem. It may be a decision 
to cont inue activity in a dif ferent direc­
t ion. Or , it may be a decision to imple­
ment a new clinical procedure or treat­
ment. In any case, the rules for arriving 
at these decisions must be established 
before the research takes place. Unfor­
tunately, this is not a simple step. 

In the cu r ren t pract ice of classical 
biostatistics, emphasis is placed on pre­
vent ing the investigator f rom rejecting a 
hypothesis when it is t rue, but little is 
done to protect him f rom accepting the 
hypothesis when it is false. This "sig­
ni f icance" testing plays a major role in 
the c u r r e n t p rac t i ce of s ta t is t ica l 
inference. This practice has many pit­
fal ls, bo th in the use of "s ign i f i cance 
levels" as a basis of hypothesis testing 
and in the acceptance of several "as­
s u m p t i o n s " in app ly ing the statistical 
models to the data available. It is in this 
area that the investigator has failed the 
most in his responsibil i ty to the deci­

sion process. He must assign a "u t i l i t y " 
to a correct decision and a " r i sk " to a 
w r o n g dec i s ion . O n l y he can do that 
and again we meet the reality of a per­
sonal probabi l i ty, a personal feeling of 
how useful is the uti l i ty and how risky 
is the risk.This becomes much less of a 
p rob lem if we cons ider hypothesis in 
the l ight of " c o n f i d e n c e " rather than 
"s igni f icance". By do ing this we con­
sider at the t ime not on ly the risk of 
accept ing as w r o n g wha t is r igh t , but 
also the risk of accepting as right what 
is wrong . 

Order statistics can be very powerfu l 
in es tab l i sh ing these " c o n f i d e n c e s " . 
Further, use of the Weibul l d istr ibut ion 
can give added latitude in their applica­
t ions. 

The next requirement for a statistical 
design is the method of col lecting data 
or informat ion to be used in solving the 
p rob lem. It must be remembered that 
data co l lec t ion devices are no t , in the 
real w o r l d , " n o i s e f r e e . " In o t h e r 
words, when you collect data f rom an 
exper iment , that data represents bo th 
the i n f o r m a t i o n tha t is genera ted by 
experiment and the noise generated by 
the data co l lec to r . This data co l lec tor 
may be instruments, people or a combi­
nation of bo th . In any case, it wi l l have 
some noise. The statistical design then 
wil l have a data col lect ion device that is 
as simple as it can be made to eliminate 
sources of noise. 

Also, the investigator must know the 
system so that he can best appraise the 
noise that is present. 

It f o l l o w s that the next stage is a 
me thod of separat ing the in fo rmat ion 
f rom the noise in the data. We call this 
"statistical analysis". From this opera­
t i on we expect to have some ins ight 
in to the character of the i n f o rma t i on . 
The noise shou ld be f i l t e red ou t . To 
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establish some order to the data, differ­
ent modes should be ident i f ied, if they 
are p resen t , a n d , h o p e f u l l y , some 
knowledge of the distr ibut ion funct ions 
underlying the samples could be sug­
gested. 

The final step in the statistical design 
we shall call "statistical in ference" . Wi th 
this step we come to conclusions about 
comparisons of our samples of informa­
t ion concerning the problem as it was 
stated. At this stage, we relate our data 
samples to statistical mathematical mod­
els and , by induct ive reasoning, come 
to some c o n c l u s i o n s , w i t h a s tated 
a m o u n t of ce r ta in t y or unce r t a i n t y 
about the real wor ld that these samples 
represent. 

Order Statistics 

Before discussing order statistics, we 
should generalize on statistics as used 
in analysis and inference. Statistics are 
used to make inferences about popula­
tions that are so large as to be practi­
cally immeasurable. Therefore, we take 
samples f r o m these p o p u l a t i o n s , 
measure the samples and by statistics 
refer the sample measurements to the 
total populat ion. Wi th classical statis­
tics, this is at best a risky business. For 
example, we assume that the popula­
t ion does not change wi th t ime. What's 
true today is true tomor row. We iden­
tify these populat ions by one or more 
characteristics that attract our interest. 
We measure these characteristics in the 
sample and we assume that they are 
independent of any characteristics other 
than the ones that are measured in the 
sample. In other words , if we f ind that 
a certain measurement taken f rom the 
sample is i n d e p e n d e n t of all o t he r 
measurements of the sample, then we 
assume the same ho lds t r u e of t h e 
entire populat ion; ie, that our sample is 
truly representative o f t h e populat ion in 
all respects. It takes courage to make 
this assumption. 

We assume that the total populat ion 
has a set of measurements similar to our 
sample. These have certain ident i fy ing 
features that we call parameters. This 
set of populat ion measurements we wi l l 
call the distr ibut ion funct ion . Thus we 
have the parameters of the distr ibut ion 
funct ion, and these are used to identify 
one distr ibut ion funct ion f rom another. 
Since the populat ions are so large as to 
be immeasurable, we cannot know the 
exact values of these parameters . We 
can estimate them, however, f rom the 
parameters of our samples. Whether or 
not these estimates are realistic, we wi l l 
never know. However, to use classical 
statistics we say they are and let it go 
at that. 

These parameters are named mean, 
variance, skewness and kur tos is . The 
mean represents a balance point in the 
d is t r ibu t ion f u n c t i o n , a fu l c rum about 
w h i c h al l t he measu remen ts of t h e 
populat ion are balanced as to weight . If 
this fu lcrum happens to coincide wi th a 
point in the distr ibut ion that equals half 
the tota l members of the p o p u l a t i o n , 
we say that we have a symetrical dis­
t r ibu t ion . If it does not, we say the dis­
t r i b u t i o n is s k e w e d (ano the r par­
ameter). 

Since members of a populat ion differ 
or vary f rom one another, the amount 
of this di f ference, or variance, is charac­
teristic for a given populat ion. So, their 
d istr ibut ion funct ions can be charac­
t e r i zed by th is var iance (ano the r 
parameter). 

Classical statistics assumes that these 
pa ramete rs are k n o w n or co r rec t l y 
estimated and also that they are the best 
desc r i p to rs of t he p o p u l a t i o n . If t he 
inves t iga to r t r u l y be l ieves t h i s , t hen 
classical statistical inference wi l l provide 
him wi th more assurance of certainty or 
uncer ta in ty about his p r o b l e m , based 
on his data. If he is in doubt about these 
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a s s u m p t i o n s , e i t he r because of past 
experience (personal probabi l i ty again) 
or just p la in re luc tance to accept so 
many assumpt ions abou t a large 
u n k n o w n p o p u l a t i o n , t he classical 
statistical inference is of little assistance. 

In the classical approach to statistics, 
we d e f i n e some p o p u l a t i o n and w e 
assign to th is p o p u l a t i o n a set of 
descriptors or parameters (mean, var­
iance, etc.). Then we try to select a rep­
resentative sample f rom this populat ion 
so that we can estimate its parameters 
f rom the sample. As has been pointed 
out , this can be risky business. 

In using order statistics we approach 
the problem f rom a di f ferent d i rect ion. 
W e f i rs t co l lec t a samp le , any set of 
values of some unknown populat ion. If 
we have such a sample, we assume only 
that the sample i tself is not the to ta l 
popu la t i on but has been d rawn f r o m 
some populat ion. No further assump­
t ions are made about the p o p u l a t i o n , 
except that it can be made countable. 

Having done this, the populat ion thus 
must have percentiles. It can be div ided 
into fractions of a fourth of the popula­
t ion , a half, three quarters, etc. Since 
this populat ion is too large to count , we 
must est imate its percent i les f r om the 
sample. We can count the sample and 
divide it into percentiles. It is not realis­
t ic to be l ieve that a percen t i l e of the 
sample w o u l d exactly or even closely 
represent a corresponding percenti le of 
t he p o p u l a t i o n . Since we assumed 
noth ing about the populat ion, our first 
approximation of what percenti le of the 
populat ion is represented by a percen­
tile of the sample must be pure chance 
(a 50% probabi l i ty). 

The ope ra t i on fo r ach iev ing this is 
quite simple. First, each member of the 
sample must be ordered according to its 

va lue w i t h its n e i g h b o r , the smallest 
being first, etc. Hence, we have a set of 
order statistics. A note should be made 
here c o n c e r n i n g the va lue of each 
ordered statistic. Since we are deal ing 
wi th percentiles of the populat ion, the 
exact value of each member of the sam­
ple does not have to be known exactly. 
We need only know whether it is larger 
or smaller than its neighbor. This con­
sideration can be most useful in clinical 
med ic ine whe re numer ica l values are 
sometimes di f f icul t to establish, such as 
in grading of reflexes, amount of pain, 
etc. 

To return to the problem at hand, we 
have ordered the data set. For computa­
t i ona l p u r p o s e w e w i l l label each 
member j , so we have a set of / order 
stat is t ics and we w i l l cal l the o r d e r 
number of each j , k. We can rank each 
member of the sample then by simply 
comput ing : 

sample rank = 
Ik 

where n = sample size 

We have said, however, that this wou ld 
not be a very realistic guess as to where 
the sample number /^ wou ld rank in the 
total populat ion. 

A simple calculation 

median rank 
1,-3 
n + .4 

where n = sample size 

yields the median rank of j j ^ in the total 
populat ion. This establishes what per­
centile of the total populat ion the sam­
p le m e m b e r r ep resen ts , w i t h a 50% 
p r o b a b i l i t y of its actua l rank be ing 
either higher or lower. The calculation 
of t he actual m e d i a n rank and its 
mathematical derivation is qui te com­
plicated.^ 
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Empir ical ly , it has been de te rm ined 
that w h e n a sample thus ranked is 
p lo t ted on W e i b u l l p robab i l i t y paper 
(the abscissa is log and the ordinate is 
log log) and it produces a straight l ine, 
the populat ion has a Weibul l distr ibu­
t i o n f u n c t i o n . W h e n th is occu rs , it 
enables the use of the Weibul l funct ion 
in many t e c h n i q u e s of s ta t is t ica l 
i n f e r e n c e . W e shal l d iscuss these 
methods later. 

To return to order statistics, we have 
thus far d e t e r m i n e d the pure chance 
ranking of our sample. Let us proceed 
to o ther probabi l i ty levels for rank ing 
the sample in to the to ta l p o p u l a t i o n . 
For example, we shall take the 5% and 
95% ranks (in clinical research a ranking 
of 1 % and 99% may be preferred). For 
the 5% rank we shall determine at what 
percent i le of the popu la t ion a sample 
member has on ly a 5% probab i l i t y of 
being less. For the 95% rank, we shall 
determine the percenti le of the popula­
t ion that the sample has a 95% probabi l ­
ity of being less. 

Now we have d r a w n " c o n f i d e n c e 
bands" for the populat ion f rom which 
our sample was drawn. We have estab­
l ished, wi th a 90% probabi l i ty, the range 
of the populat ion f rom which our sam­
ple was drawn. This gives us a tool for 
making statistical inference about other 
samples we may have and their relation 
to the original sample. In the process, 
we have no assump t i ons abou t the 
populat ion other than it does exist and 
that it is countable. 

The calcu lat ion of popu la t i on ranks 
other than the median rank is not sim­
ple but is mathematically sound. Com­
puter programs are avai lable that w i l l 
calculate any rank for any size sample.^ 

This becomes a powerful statistical 
tool for medicine because it makes no 
requirements about stationarity, a priori 

and repeatable probabi l i t ies, or func­
t i ona l d e p e n d e n c e of t he assumed 
populat ion. 

The Weibull Distribution 

In 1939 Waloddi Weibul l postulated a 
very genera l cumu la t i ve d i s t r i b u t i o n 
funct ion whose only requirements were 
that it be non-zero and non-decreasing. 
In o the r w o r d s , t h e p r o b a b i l i t y of 
accounting for the total populat ion was 
ever increasing as you "added u p " your 
total sample. This is done very simply by 
f i rs t o r d e r i n g the samp le , jus t as in 
o rder statistics and then d e t e r m i n i n g 
the median rank of each member of the 
sample. A Weibul l funct ion exists when 
a linear relationship holds between the 
l oga r i t hm of t he values of t he o rde r 
s tat is t ics and the l o g a r i t h m of the 
logarithm of the cumulative percent of 
the populat ion. 

Experience has shown that data col­
lected f rom experiments in industry and 
biology do fit a Weibul l d ist r ibut ion. 

Weibul l has called this distr ibut ion a 
funct ion of broad applicability for it is, 
in reality, a whole family of distr ibut ion 
f unc t i ons . The " n o r m a l " d i s t r i bu t i on 
funct ion is a Weibul l d istr ibut ion func­
t ion , and so is the exponent ial , the Chi 
Square and the gamma. Thus, it is not 
only a very useful model for statistical 
inference but it also is useful in deter­
mining whether or not your data fits a 
more wel l -known distr ibut ion funct ion. 

The W e i b u l l d i s t r i b u t i o n also has 
parameters or charac te r i s t i cs w h i c h 
describe it exactly. The first of these is 
the loca t ion parameter . The loca t ion 
parameter (alpha, a) describes the point 
of or igin of the probabi l i ty density func­
t i o n . The second W e i b u l l parameter 
(beta, /3) is the shape parameter. This 
paramete r gives a n u m e r i c a l va lue 
which equates to the general shape of 
t he p robab i l i t y dens i ty f u n c t i o n . The 
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th i rd parameter is the scale parameter, 
( theta cj)) w h i c h de f i nes the va lue of 
your sample (x) at which 63.2 percent of 
y o u r dens i t y f u n c t i o n has been 
accounted. 

pa rame te rs . The t e c h n i q u e s of 
"c lassical" statistical inference, as wel l 
as many others, can be used when the 
classical techniques are inappropriate. 

Since the shape pa rame te r , be ta , 
describes the shape of the probab i l i ty 
density funct ion, it is the slope of the 
linear funct ion of the cumulative dis­
t r i bu t i on f u n c t i o n . It then becomes a 
simple procedure to estimate all three 
Weibul l parameters. The best alpha wi l l 
give the best linear fit of the data. This 
de te rmines the beta , and the theta is 
then self def ined. From these parame­
ters , the more fami l iar parameters of 
your distr ibut ion can be evaluated such 
as mean (mu), variance (sigma squared) 
and skewness.The Weibu l l d is t r ibut ion 
f u n c t i o n is of c o n s i d e r a b l e use in 
evaluat ing the data and separating the 
informat ion f rom the noise, particularly 
when we use its graphical propert ies. If 
we have a sample set of data that repre­
sents a single f u n c t i o n , it w i l l p lo t on 
Weibul l probabil i ty paper (abscissa-log, 
ord inate log-log) as a straight l ine. If, 
however, the data represents more than 
one func t ion , the Weibul l plot wi l l be 
a mixture of straight lines.^ By trial and 
e r ro r , t he sample po in t s can be 
separated and rep lo t ted un t i l each is 
ident i f ied w i t h its part icular f u n c t i o n . 
This is a simple yet proven method of 
separating a mixed signal. This method 
can also be used to determine whether 
or not extreme values in a sample really 
belong to the populat ion under study, 
o r , if they shou ld be d iscarded f r o m 
further considerat ion. 

For statistical inference, a large set of 
procedures using the Weibul l parame­
ters can be used in hypothesis testing, 
comparison of samples and predict ions 
about samp l ing . There is no need to 
assume a norma l d i s t r i b u t i o n for t he 
data. Whether or not it is normal can be 
d e t e r m i n e d by us ing the W e i b u l l 

Bayesian Statistics 

There are many arguments concern­
ing the Bayesian approach to statistics 
and the concept of "personal probabi l ­
i ty" even among the Bayesians them­
selves."^ However, in the realm of cl ini­
cal inves t iga t ion , the idea and use of 
pe rsona l p r o b a b i l i t y s h o u l d n o t be 
avoided. The use of a statistical evalua­
t ion of a clinical experiment is simply an 
ex tens i on of a phys ic ian 's i n t u i t i o n 
about some problem based upon some 
def ined observations. Insti tut ion of the 
research, organizing of the problem and 
the m e t h o d of data c o l l e c t i o n are 
unavoidably inf luenced by the cl ini­
c ian's i n t u i t i o n . It is p rope r that th is 
intui t ion should be properly uti l ized in 
f o l l o w i n g t h r o u g h on the p r o j e c t . 
I ndeed , in the f inal u t i l i za t ion of t he 
resul ts of such e x p e r i m e n t a t i o n , t he 
experiment wi l l only prove useful if in 
fact the results can be made compatible 
or acceptable to the c l in ic ian 's p r io r 
probabi l i ty ( intuit ion) of these results. 

Summary 

The foregoing summary of ideas con­
cerning the use of statistics in medical 
research suggests that statistics should 
be simple, easily understood and based 
on c o m m o n sense. The invest igator 's 
own feelings should be the basis for the 
des ign of t he e x p e r i m e n t and the 
eva lua t i on of the resu l ts (Bayesian 
s ta t is t ics) . The s imp les t app roach is 
order statistics, where it is not required 
that we make any assumpt ions about 
the character of the populat ion that is 
being investigated. If a more compl i ­
cated model is desired or necessary, 
the Weibul l d istr ibut ion funct ion is 
the most appropriate, both f rom its 
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Appendix I 

The Random Sample 

If t he re is some p o p u l a t i o n of e lements 
that has some characteristic X that we wish 
to investigate, and the populat ion has some 
distr ibut ion funct ion FQ (x), we suppose that 
for k = 1,2,. . ., and for an arbitrary x-|, x j , 
. . . , x|^ there exists the condi t ional d ist r ibu­
t ion funct ion 

Fk (^\^^' ^2' 

X , , 

xk) = 

• -X'k 

P (X'k + i < x | X ' i 

= Xk' 

If th is s u p p o s i t i o n is t r u e t h e n w e may 
choose some e lements of a sample of the 
populat ion by a random method if: 

(1) for every x we have P (X<x) = FQ (x) 
(2) for k = 1, 2, . . . , n-1 and for arbitrary 

x-|, X2,. . . , Xk we have the equal i t ies 

P(Xk + i < x - X i = x-i Xk = Xk) = 

F|̂  (x-x.| . . ., xk) 

It must be noted that this equality is con­
dit ional : 

Fk (x if x.|, . . . , Xk exists) = P(Xk+-i < x if 

X T = X T , X2 = X2 Xk = xk) 

In classical statistical inference an assump­
t i o n is made that i n d e e d fo r X b e i n g a 
m e m b e r of t he p o p u l a t i o n and x b e i n g a 
member of the sample popu la t ion , X-| = x i , 
. . . Xk=xk or that P(X-| =x- ] , . . .,Xk =xk) > 
0.99 (almost certainty). In real life problems 
this is of necessity an in tu i t i ve or personal 
probabi l i ty since it cannot be established by 
observat ion. 

Further assumptions are required for most 
classical tests of statistical signif icance. One 
such assumption is that 

Fo(x) 
(TV2^ 

exp -
( X - / U . ) 

2a' 

ot that the characteristic X is normal ly dis­
t r ibuted in the popu la t ion . Again since this 
cannot be observed we assume that since 

X"! = X^, . . . Xk = Xk ( intui t ion) then 
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FQ (X) exp 
(x-/x)-

2(r' 

It has been observed that w h e n k < 3 0 , t he 
sample x i , . . . Xk is not normal ly dis­
t r ibu ted. Iherefore when small random sam­
ples are used as a basis for classical inference 
severa l i n t u i t i v e a s s u m p t i o n s mus t be 
accepted before beginn ing the testing of the 
samples. 

It can be fu r t he r observed that samples, 
regardless of how large, w h e n drawn f r o m 
biological populat ions are also not normal ly 
d is t r ibuted. This should not be expected 
since many b io log ica l popu la t i ons display 
infant mor ta l i ty , random decay, or o ld age 
survival. In such cases the characteristic X of 
the p o p u l a t i o n or a sample x d r a w n f r o m 
such a populat ion cou ld not be normally dis­
t r ibu ted . 

Appendix II 

Parameters of the Distribution of a Random 
Variable 

There are four kinds of parameters of a dis­
t r ibut ion of a random variable: 

(1) moments 
(2) funct ions of moments 
(3) order parameters 
(4) funct ions of order parameters 

Moments 
The moment of order k of the random vari­

able X is: 

mk = E (X^) 

For the discrete distribution 

E (xk) = ~x^ 

For the cont inuous d is t r ibut ion 

E (X^) = J"^ xk f (x )dx 

If mk = E [ X - C ] ' ' , and c = m i = E(x), then 

Mk = E [ X - E (X)]'^ are central moments when 

c = m i = E(X) = 0 

T h e n y^i = E [ X - E ( X ) ] = E [ X - m i ] = 

E [ x ] - m i = m i - m i = 0 

The central moment of the first order, / i i , 
is called the mean of the d is t r ibut ion func­
t ion of X (the populat ion) . It fo l lows that 

M2 = E [ X - E (X) Y = E [ ( X - m i ) 2 ] 

= E [ x ] 2 - 2 m i E(X)-t-mi2 

The central moment of the second order, /i2 
is called the variance of X and is denoted by 
<T2. 

The central moment of the th i rd order, /x^ is 
the th i rd power of / x i . 

/t3 = E [ X - E ( X ) ] 3 = E [ ( X - m i ) 3 ] 

= E (X3) - 3 m i E ( x 2 ) + 3 m i 2 E [ x ] - m i ^ 

m-j —3m.^m2+2mi3 

If the d is t r ibut ion of X is symmetrical then all 

odd moments are zero, but if this is not the 

case t h e n a f u n c t i o n of t h e t h i r d cen t ra l 

m o m e n t , / j . ^ , is d e f i n e d as a = J i 3 _ a n d is 

called the coeff ic ient of skewness. 

Order Parameters 

The value x satisfying the inequalit ies 
P(X<x) >1/2, P(X>x)>1/2 

is called the median of the d is t r ibut ion of the 
random variable X. 

The value x satisfying the inequalit ies 
P (X<x)>p , P(X>x)>1-p, (0<p<1) 

is called the quanti le of order p. 

The value of x satisfying the equality 
P (X<x)= 0 

is called the point of or ig in of the dis­
t r ibu t ion of X. This is called the parameter a 
of a We ibu l l d is t r ibut ion func t ion . 

The value x satisfying the equality 
P(X=x) = 0.623 

is ca l led the locat ion parameter of a 
Weibu l l d is t r ibu t ion . 
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Appendix III 

Order Statistics 

Let X i , X2, . . 
random variable. 

Let X I , x2, . . 
drawn f rom X-|, X2, 

Xn be an n d imens iona l 

Xn be a sample of values 

way tha t X|-.|, x^2 ' • • • " r p 

i n e q u a l i t i e s X | . . ^<xr2^ ' ' ' — " r n 

Then f [ x ( - = ^ < x < ^ ) ] = 0 fo r x < X r . , 

and f [x(-=c<x=^) ] = ^ (m = 1,2, . . . n) 
for x>Xf.|. 

By def in i t ion x^^ < x = Sr, (x) and is called the 

"empir ica l d is t r ibut ion f u n c t i o n " of x. 

From these a s s u m p t i o n s it f o l l o w s tha t 
P (X r<x ) = F(x) = p = cons tan t (r = 1,2, 
. . . n) 

Hence, for a f ixed value of x, Sp (x) is the 
f r e q u e n c y o f successes in t he B e r n o u l l i 
scheme. Thus 

P [ S n ( x ) = ^ ] = 
m!(n-m) ! 

[ F ( x ) ] ' ^ [ l - F ( x ) ] n - m 

Let the funct ion of ( X i , X2, . . . Xp) wh ich 

^rk 

quence x.^, X2 

statistic" and be noted by ^k The number 

k is called the " r a n k " of ^ k ' " ' . 

Xp be caller" .>n " o r d e r 

" i l • — • " 

sat is f ies t h e Let * k n ( x ) = F (5k ' " * ) =P(^ |^<"><x) 

P Sr,(x)> 
n 

= 1 P 
m = k 

[Sn(x) = ^] 

then </>kn(x)= S m l (n -m) ! [F (x ) ] ' ^ [ l -F (x ) ] ' 

assume f(x) = F'(x) exists 

then f,^|.^(x) of ^|^(n) exists 

therefore fkn 'x) 

[F (x ) ] ^ -1 [ l -F (x ) ] ^ 

(k-1)! (n-k)! 

•f(x) 

Appendix IV 

7"6e Weibul l Dist r ibut ion 

If P(X<x) = F(x) 

then F(x) = 1-e-*(x) 

The probabi l i ty of the occurrence of some 
event x f rom a set of events X i , X2, . . . x^ 
is def ined by: 

Pn = i-e-n* M 

The funct ion cf (x) must be specif ied w i th 
the necessary condi t ions that it be a posit ive, 
non-decreasing func t ion , vanishing at some 
point > zero. 

<t>(x) 

Then F (x) 

2L£.\ satisfies these requirements. 

x^\H 
e-a 

^ - e - i ^ T is a three 

parameter Weibu l l d is t r ibut ion func t ion . 

If alpha is assumed to be zero then F(x) = 

1 - e ' ( - ) ^ is a two parameter Weibu l l d ist r ibu-
' t ion func t ion . 

For the two parameter Weibu l l d is t r ibut ion 
we may show that the shape parameter beta 

is the slope of the linear funct ion Y = BX-l-A 
when p lo t ted on We ibu l l p robab i l i t y paper 
(ordinate- log log and abscissa-log) as fo l ­
lows: 

1-F(x) 

1 
1-F(x) 

+ / x \ ^ 

I n 

1 

1-F (X) 

= I n I n 

1 
1-F(x) 

= fi ^n x-fi ^n n 

1 

I n I n 

l e tY 

let X = I n X 
let A = -/3 I n e 
let B = /3 
then Y = BX+A 

The probabi l i ty density funct ion of the two 
parameter Weibul l Function is: 

f(x) = 
6li 
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