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Statistics for Clinical Research

W. R. Mc Crum, PhD*

The purpose of this paper is to make under-
standable the use of statistics in the field of
medicine, and to introduce to the clinician
some new methods of statistics for drawing
some reasonable conclusions based on the
meager data usually available. There is, after
all, only one valid use of statistics: to enable
oneself to make a personal decision based
on the information available.
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BEFORE introducing new methods
of statistics, it is appropriate to explain
why the old methods are not satisfac-
tory for use in clinical medical research.
Most of the statistical procedures cur-
rently used rely on a mathematical
model called a ““normal distribution
function”’. This function is best
described by its moments of which the
mean and variance are the more com-
mon and useful. A number of methods
of statistical inference or hypothesis
testing are based on the use of these
parameters. Furthermore, these
methods have been widely used and
have been given great credence in clini-
cal research. Unfortunately, both in
theory and in practical application,
these methods have little or no validity
when used on clinical data.

It must be remembered that, when
statistical inference is used, inductive
reasoning matches a “real life"’ situation
to a formalized abstract mathematical
model. The validity of the statistical
inference, then, is only as good as the
match between the ‘‘real” and the
““abstract”’. This matching is at best an
intuitive judgment by the individual
who gathers the data. This in turn
requires that the investigator accept a
number of assumptions about the
source of data. These assumptions are
most difficult to accept from a realistic
viewpoint. They require that the charac-
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teristics under study have a priori and
repeated probabilities in the total
population. To be true the characteristic
under observation must be completely
independent of any other characteristic
that is not under observation. For
example, if some physiologic function is
observed for a control sample and a
treated sample of people, then either of
two requirements must be met: 1) An
assumption must be made that the
physiologic function has no relation to
age, weight, sex, etc. of the total
population, or 2) the exact relationship
of this function to these characteristics
must be known. Even more difficult to
accept is a necessary assumption that
the sample be a random one as defined
mathematically. In a more simple state-
ment, the distribution function of the
sample must be the same as the dis-
tribution function of the population. By
observation it is known that a sample of
less than 30 data points never has a nor-
mal distribution. The question that
always arises with small samples is
whether the sample, despite its non
normality, does indeed come from a
normally distributed population.

The simplest way to avoid the preced-
ing question is to use “‘distribution
free” statistics. A method of this kind
will be discussed later. Another method
is to assume that the population has the
same distribution as the sample and use
that as the mathematical model. This
does not permit the use of conventional
parametric statistics when the samples
are less than 30 data points.

When studying events in living sys-
tems it should not be expected that the
distribution functions would have nor-
mality. Normality requires that the
biologic process remain stationary; that
is, it must not change with time. Living
systems are not stationary; they have a
birth, a growth period, a maturation
period, and a decay period. Some sys-
tems are characterized by an infant mor-
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tality distribution, others by an old age
survival function and still others by a
simple random decay process. None of
these are normal distributions. But, they
can be described by other distribution
functions such as the exponential, the
gamma, the log-normal, the extreme
value, and others.

Statistical methods are a very personal
thing. Regardless of what methods are
used in statistical analysis or inference,
they are only as valid as the user’s belief
in them. The only purpose of statistical
inference is to enable the user to make
a decision when the outcome has some
doubt. Two tools are available to make
that decision: 1) An intuitive belief
based on past personal experience and
2) a statistical evaluation of some
specific data. The final decision will be
based on a blending of these two tools.
This blending into a decision process
can best be accomplished by a “sta-
tistical design” of the experiment. This
design is really only a formalized state
of the steps to be taken in collecting
data and arriving at a decision.

Statistical Design

The most important requirement for
the statistical design of an experiment is
good common sense. The entire experi-
ment must be looked at with proper
perspective. What is the purpose of the
research? What will it cost in time and
money? Are the possible rewards worth
the effort? What is the methodology to
be used? The questions must first be
answered in an informal yet orderly and
common sense fashion. Then a more
rigorous approach to the design must
be established. What is the purpose of
the research? Here, we assume that with
today’s costs in time and money, a
research project does have a real pur-
pose, at least as far as the investigator
is concerned. For a realistic pursuit of
the research problem, he must state
that problem in a concise, consistent
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and somewhat rigid manner. Here we
meet the concept of personal prob-
ability. The investigator has met some
problem that challenges him and on
which he has some personal views. He
wishes to establish whether his ideas
are right or wrong. The second require-
ment in a statistical design then, is a
concise and proper statement of the
problem.

The third requirement is the formula-
tion of a plan of action based on the
results of the solution of the problem.
This requirement is seldom met in med-
ical research and, if it is considered, it
is usually only haphazardly. With
today’s economy and cost conscious-
ness about research, a project has little
or nothing to merit its undertaking if,
when completed, it does not provide a
definite decision about further activity
based on the results of the research.
The pursuant action may be a simple
decision to desist from further concern
about the problem. It may be a decision
to continue activity in a different direc-
tion. Or, it may be a decision to imple-
ment a new clinical procedure or treat-
ment. In any case, the rules for arriving
at these decisions must be established
before the research takes place. Unfor-
tunately, this is not a simple step.

In the current practice of classical
biostatistics, emphasis is placed on pre-
venting the investigator from rejecting a
hypothesis when it is true, but little is
done to protect him from accepting the
hypothesis when it is false. This “sig-
nificance” testing plays a major role in
the current practice of statistical
inference. This practice has many pit-
falls, both in the use of “‘significance
levels’” as a basis of hypothesis testing
and in the acceptance of several ‘“‘as-
sumptions’’ in applying the statistical
models to the data available. It is in this
area that the investigator has failed the
most in his responsibility to the deci-
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sion process. He must assign a “utility”
to a correct decision and a “risk” to a
wrong decision. Only he can do that
and again we meet the reality of a per-
sonal probability, a personal feeling of
how useful is the utility and how risky
is the risk.This becomes much less of a
problem if we consider hypothesis in
the light of ““confidence’” rather than
“significance”’. By doing this we con-
sider at the time not only the risk of
accepting as wrong what is right, but
also the risk of accepting as right what
is wrong.

Order statistics can be very powerful
in establishing these ““confidences’’.
Further, use of the Weibull distribution
can give added latitude in their applica-
tions.

The next requirement for a statistical
design is the method of collecting data
or information to be used in solving the
problem. It must be remembered that
data collection devices are not, in the
real world, ‘““noise free.”” In other
words, when you collect data from an
experiment, that data represents both
the information that is generated by
experiment and the noise generated by
the data collector. This data collector
may be instruments, people or a combi-
nation of both. In any case, it will have
some noise. The statistical design then
will have a data collection device that is
as simple as it can be made to eliminate
sources of noise.

Also, the investigator must know the
system so that he can best appraise the
noise that is present.

It follows that the next stage is a
method of separating the information
from the noise in the data. We call this
"‘statistical analysis’”’. From this opera-
tion we expect to have some insight
into the character of the information.
The noise should be filtered out. To
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establish some order to the data, differ-
ent modes should be identified, if they
are present, and, hopefully, some
knowledge of the distribution functions
underlying the samples could be sug-
gested.

The final step in the statistical design
we shall call “statistical inference’”. With
this step we come to conclusions about
comparisons of our samples of informa-
tion concerning the problem as it was
stated. At this stage, we relate our data
samples to statistical mathematical mod-
els and, by inductive reasoning, come
to some conclusions, with a stated
amount of certainty or uncertainty
about the real world that these samples
represent.

Order Statistics

Before discussing order statistics, we
should generalize on statistics as used
in analysis and inference. Statistics are
used to make inferences about popula-
tions that are so large as to be practi-
cally immeasurable. Therefore, we take
samples from these populations,
measure the samples and by statistics
refer the sample measurements to the
total population. With classical statis-
tics, this is at best a risky business. For
example, we assume that the popula-
tion does not change with time. What's
true today is true tomorrow. We iden-
tify these populations by one or more
characteristics that attract our interest.
We measure these characteristics in the
sample and we assume that they are
independent of any characteristics other
than the ones that are measured in the
sample. In other words, if we find that
a certain measurement taken from the
sample is independent of all other
measurements of the sample, then we
assume the same holds true of the
entire population; ie, that our sample is
truly representative of the population in
all respects. It takes courage to make
this assumption.
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We assume that the total population
has a set of measurements similar to our
sample. These have certain identifying
features that we call parameters. This
set of population measurements we will
call the distribution function. Thus we
have the parameters of the distribution
function, and these are used to identify
one distribution function from another.
Since the populations are so large as to
be immeasurable, we cannot know the
exact values of these parameters. We
can estimate them, however, from the
parameters of our samples. Whether or
not these estimates are realistic, we will
never know. However, to use classical
statistics we say they are and let it go
at that.

These parameters are named mean,
variance, skewness and kurtosis. The
mean represents a balance point in the
distribution function, a fulcrum about
which all the measurements of the
population are balanced as to weight. If
this fulcrum happens to coincide with a
point in the distribution that equals half
the total members of the population,
we say that we have a symetrical dis-
tribution. If it does not, we say the dis-
tribution is skewed (another par-
ameter).

Since members of a population differ
or vary from one another, the amount
of this difference, or variance, is charac-
teristic for a given population. So, their
distribution functions can be charac-
terized by this variance (another
parameter).

Classical statistics assumes that these
parameters are known or correctly
estimated and also that they are the best
descriptors of the population. If the
investigator truly believes this, then
classical statistical inference will provide
him with more assurance of certainty or
uncertainty about his problem, based
on his data. If he is in doubt about these
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assumptions, either because of past
experience (personal probability again)
or just plain reluctance to accept so
many assumptions about a large
unknown population, the classical
statistical inference is of little assistance.

In the classical approach to statistics,
we define some population and we
assign to this population a set of
descriptors or parameters (mean, var-
iance, etc.). Then we try to select a rep-
resentative sample from this population
so that we can estimate its parameters
from the sample. As has been pointed
out, this can be risky business.

In using order statistics we approach
the problem from a different direction.
We first collect a sample, any set of
values of some unknown population. If
we have such a sample, we assume only
that the sample itself is not the total
population but has been drawn from
some population. No further assump-
tions are made about the population,
except that it can be made countable.

Having done this, the population thus
must have percentiles. It can be divided
into fractions of a fourth of the popula-
tion, a half, three quarters, etc. Since
this population is too large to count, we
must estimate its percentiles from the
sample. We can count the sample and
divide it into percentiles. It is not realis-
tic to believe that a percentile of the
sample would exactly or even closely
represent a corresponding percentile of
the population. Since we assumed
nothing about the population, our first
approximation of what percentile of the
population is represented by a percen-
tile of the sample must be pure chance
(a 50% probability).

The operation for achieving this is
quite simple. First, each member of the
sample must be ordered according to its
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value with its neighbor, the smallest
being first, etc. Hence, we have a set of
order statistics. A note should be made
here concerning the value of each
ordered statistic. Since we are dealing
with percentiles of the population, the
exact value of each member of the sam-
ple does not have to be known exactly.
We need only know whether it is larger
or smaller than its neighbor. This con-
sideration can be most useful in clinical
medicine where numerical values are
sometimes difficult to establish, such as
in grading of reflexes, amount of pain,
etc.

To return to the problem at hand, we
have ordered the data set. For computa-
tional purpose we will label each
member j, so we have a set of j order
statistics and we will call the order
number of each j, k. We can rank each
member of the sample then by simply
computing:

Jj
sample rank = ni

where n = sample size

We have said, however, that this would
not be a very realistic guess as to where
the sample numberj, would rank in the
total population.

A simple calculation

/‘k -3
dian rank = ———
e n+ 4

where n = sample size

yields the median rank of /. in the total
population. This establishes what per-
centile of the total population the sam-
ple member represents, with a 50%
probability of its actual rank being
either higher or lower. The calculation
of the actual median rank and its
mathematical derivation is quite com-
plicated."
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Empirically, it has been determined
that when a sample thus ranked is
plotted on Weibull probability paper
(the abscissa is log and the ordinate is
log log) and it produces a straight line,
the population has a Weibull distribu-
tion function. When this occurs, it
enables the use of the Weibull function
in many techniques of statistical
inference. We shall discuss these
methods later.

To return to order statistics, we have
thus far determined the pure chance
ranking of our sample. Let us proceed
to other probability levels for ranking
the sample into the total population.
For example, we shall take the 5% and
95% ranks (in clinical research a ranking
of 1% and 99% may be preferred). For
the 5% rank we shall determine at what
percentile of the population a sample
member has only a 5% probability of
being less. For the 95% rank, we shall
determine the percentile of the popula-
tion that the sample has a 95% probabil-
ity of being less.

Now we have drawn ‘‘confidence
bands”’ for the population from which
our sample was drawn. We have estab-
lished, with a 90% probability, the range
of the population from which our sam-
ple was drawn. This gives us a tool for
making statistical inference about other
samples we may have and their relation
to the original sample. In the process,
we have no assumptions about the
population other than it does exist and
that it is countable.

The calculation of population ranks
other than the median rank is not sim-
ple but is mathematically sound. Com-
puter programs are available that will
calculate any rank for any size sample.?

This becomes a powerful statistical
tool for medicine because it makes no
requirements about stationarity, a priori
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and repeatable probabilities, or func-
tional dependence of the assumed
population.

The Weibull Distribution

In 1939 Waloddi Weibull postulated a
very general cumulative distribution
function whose only requirements were
that it be non-zero and non-decreasing.
In other words, the probability of
accounting for the total population was
ever increasing as you “‘added up” your
total sample. This is done very simply by
first ordering the sample, just as in
order statistics and then determining
the median rank of each member of the
sample. A Weibull function exists when
a linear relationship holds between the
logarithm of the values of the order
statistics and the logarithm of the
logarithm of the cumulative percent of
the population.

Experience has shown that data col-
lected from experiments in industry and
biology do fit a Weibull distribution.?-

Weibull has called this distribution a
function of broad applicability for it is,
in reality, a whole family of distribution
functions. The ““normal’’ distribution
function is a Weibull distribution func-
tion, and so is the exponential, the Chi
Square and the gamma. Thus, it is not
only a very useful model for statistical
inference but it also is useful in deter-
mining whether or not your data fits a
more well-known distribution function.

The Weibull distribution also has
parameters or characteristics which
describe it exactly. The first of these is
the location parameter. The location
parameter (alpha, @) describes the point
of origin of the probability density func-
tion. The second Weibull parameter
(beta, B) is the shape parameter. This
parameter gives a numerical value
which equates to the general shape of
the probability density function. The
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third parameter is the scale parameter,
(theta ¢) which defines the value of
your sample (x) at which 63.2 percent of
your density function has been
accounted.

Since the shape parameter, beta,
describes the shape of the probability
density function, it is the slope of the
linear function of the cumulative dis-
tribution function. It then becomes a
simple procedure to estimate all three
Weibull parameters. The best alpha will
give the best linear fit of the data. This
determines the beta, and the theta is
then self defined. From these parame-
ters, the more familiar parameters of
your distribution can be evaluated such
as mean (mu), variance (sigma squared)
and skewness.The Weibull distribution
function is of considerable use in
evaluating the data and separating the
information from the noise, particularly
when we use its graphical properties. If
we have a sample set of data that repre-
sents a single function, it will plot on
Weibull probability paper (abscissa-log,
ordinate log-log) as a straight line. If,
however, the data represents more than
one function, the Weibull plot will be
a mixture of straight lines.? By trial and
error, the sample points can be
separated and replotted until each is
identified with its particular function.
This is a simple yet proven method of
separating a mixed signal. This method
can also be used to determine whether
or not extreme values in a sample really
belong to the population under study,
or, if they should be discarded from
further consideration.

For statistical inference, a large set of
procedures using the Weibull parame-
ters can be used in hypothesis testing,
comparison of samples and predictions
about sampling. There is no need to
assume a normal distribution for the
data. Whether or not it is normal can be
determined by using the Weibull
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parameters. The techniques of
““classical” statistical inference, as well
as many others, can be used when the
classical techniques are inappropriate.

Bayesian Statistics

There are many arguments concern-
ing the Bayesian approach to statistics
and the concept of “personal probabil-
ity even among the Bayesians them-
selves.® However, in the realm of clini-
cal investigation, the idea and use of
personal probability should not be
avoided. The use of a statistical evalua-
tion of a clinical experiment is simply an
extension of a physician’s intuition
about some problem based upon some
defined observations. Institution of the
research, organizing of the problem and
the method of data collection are
unavoidably influenced by the clini-
cian’s intuition. It is proper that this
intuition should be properly utilized in
following through on the project.
Indeed, in the final utilization of the
results of such experimentation, the
experiment will only prove useful if in
fact the results can be made compatible
or acceptable to the clinician’s prior
probability (intuition) of these results.

Summary

The foregoing summary of ideas con-
cerning the use of statistics in medical
research suggests that statistics should
be simple, easily understood and based
on common sense. The investigator’s
own feelings should be the basis for the
design of the experiment and the
evaluation of the results (Bayesian
statistics). The simplest approach is
order statistics, where it is not required
that we make any assumptions about
the character of the population that is
being investigated. If a more compli-
cated model is desired or necessary,
the Weibull distribution function is
the most appropriate, both from its
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simplicity of use and its broad character

that encompasses most of the distribu-

tion functions with which we are familiar.
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Appendix |

The Random Sample

If there is some population of elements
that has some characteristic X that we wish
to investigate, and the population has some
distribution function Fg (x), we suppose that
for k = 1,2,.. ., and for an arbitrary xq, x2,

., Xk there exists the conditional distribu-
tion function

Fi (x|x1, X2, .. .xXK) = P (X'g41<x| X1 =

Xqr o v e X'k = xk)
If this supposition is true then we may

choose some elements of a sample of the
population by a random method if:

(1) for every x we have P (X<x) = Fp (x)
() fork = 1,2, ..., n-1and for arbitrary
X1, X2,. . . , Xk we have the equalities

P(Xk+1 <xX1=x%x1,. . - ,Xk=Xk) =

Fie (xoxq ..., xk)

It must be noted that this equality is con-
ditional:

Fie if xq, . .., xg exists) = P(Xg 41 <x if

X1=x1, X2=x2, . . . , Xk=xK)

In classical statistical inference an assump-
tion is made that indeed for X being a
member of the population and x being a
member of the sample population, X1 =x1,
... Xk=xk or that P(X7 =x1,. .. Xk =xk) =
0.99 (almost certainty). In real life problems
this is of necessity an intuitive or personal
probability since it cannot be established by
observation.

Further assumptions are required for most
classical tests of statistical significance. One
such assumption is that

1 (x—pu)
X1, X5, ... X, = Fg(x) = exp —
172 k 0 aV2xw d [20’21

or that the characteristic X is normally dis-

tributed in the population. Again since this

cannot be observed we assume that since
X1= X1, . .. Xk = xk (intuition) then
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x1,...xk=F0(x)=

o 2
! exp [(X '“)J
o¥2m 20*
It has been observed that when k<30, the
sample x1, ...xg is not normally dis-
tributed. |herefore when small random sam-
ples are used as a basis for classical inference
several intuitive assumptions must be
accepted before beginning the testing of the
samples.

It can be further observed that samples,
regardless of how large, when drawn from
biological populations are also not normally
distributed. This should not be expected
since many biological populations display
infant mortality, random decay, or old age
survival. In such cases the characteristic X of
the population or a sample x drawn from
such a population could not be normally dis-
tributed.

Appendix Il

Parameters of the Distribution of a Random
Variable

There are four kinds of parameters of a dis-
tribution of a random variable:

(1) moments

(2) functions of moments

(3) order parameters

(4) functions of order parameters

Moments

The moment of order k of the random vari-
able X is:

mi = E (XK)
For the discrete distribution
E (xk) = 1% kp1
For the continuous distribution

E(xK) = [ xkf(x)dx

If m = E[X—c]¥, and c = my = E(x), then

pi = E[X-E (X)]k are central moments when

c=mp=EX) =0

Then w1 = E[X—E(X)] = E[X—m1] =
E[X]-mq=mq-mq =0

The central moment of the first order, “1,

is called the mean of the distribution func-
tion of X (the population). It follows that

uy = E[X—E %) ]* = E[(X-mq)?]

= E[X]2-2mq E (X)+m42

The central moment of the second order, uy

is called the variance of X and is denoted by
2

O<.

The central moment of the third order, K3 is
the third power of 1.

u3 = E[X-EX)]3 = E[(x-mq)3]
= E (X3) —3mqEX?) + 3mq2E[X] —-m43

= m3—3m1 m2+3m13—m13

m3 —3m1m2+2m13

If the distribution of X is symmetrical then all
odd moments are zero, but if this is not the
case then a function of the third central
moment, u3, is defined as « =3 and is

called the coefficient of skewness.?

Order Parameters

The value x satisfying the inequalities
P(X<x) >1/2, P(X=x)=1/2
is called the median of the distribution of the
random variable X.

The value x satisfying the inequalities
P(X<X)=p, P(X=x)=>1-p, (0<p<T)
is called the quantile of order p.

The value of x satisfying the equality
P(X<x)= 0
is called the point of origin of the dis-
tribution of X. This is called the parameter «
of a Weibull distribution function.

The value x satisfying the equality
P(X=x) = 0.623
is called the location parameter of a
Weibull distribution.
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Appendix 111

Order Statistics

Let X1, X, . .
random variable.

. Xp be an n dimensional

Let x1, x2, . . . xn be a sample of values
drawn from X1, Xp, . . . Xp.

Arrange the sample x1, . . . Xp in such a
way that Xrqr Xpps - - - Xrp satisfies the

inequalities Xp<Xrp< ... SXrp

Then f[x(—®<x<x) ] = 0 for X<Xrq
and f[x(—=<x®) ] = % (m=1,2, ...n)
for X>Xpq-

By definition xr, <x=Sp, (x) and is called the
““empirical distribution function” of x.

From these assumptions it follows that
P(Xy<x) = F(x) = p = constant (r = 1,2,
...n)

Hence, for a fixed value of x, Sy (x) is the
frequency of successes in the Bernoulli
scheme. Thus

P[Sh) = nﬁ] -8 _ [Fe0]™ [1-F(0 ] n-m

m!(n-m)!

Let the function of (X4, Xp, . . . Xp) which
takes the value Xr in each possible se-
. X, be callec' 2n “order
statistic’” and be noted by ¢k (M) The number

k is called the “rank” of k(M

quence Xq, Xy, - -

Let dyn(x) = F(Zk(™) =P(gy (M<x) =
n
P[S (x 2“] =spls
=l =3P [sn00 = ]
n n! m n-m
then ¢, ()= 3 —),[F(x)] [1-F]
-4 .

assume f(x) = F'(x) exists

then f . (x) of ¢ (N) exists

n!

fore f T KD (nkT
therefore fipn(x) (k-1)! (n-k)!

[Foo]T [1-F0] -k gy

Appendix IV

The Weibull Distribution
If P(X<x) = F(x)
then F(x) = 1-e-$(X)
The probability of the occurrence of some

event x from a set of events X9, X9, 0 X
is defined by:

Pn = 1-e I‘ld)

The function ¢ (x) must be specified with
the necessary conditions that it be a positive,
non-decreasing function, vanishing at some
point > zero.

n

d(x) = '(;;O‘)B satisfies these requirements.

Then F (x) = 1-e'<?i‘-‘-‘>ﬁ is a three

6-«

parameter Weibull distribution function.
If alpha is assumed to be zero then F(x)=

1-e‘(’i)'3 is a two parameter Weibull distribu-
tion function.

For the two parameter Weibull distribution
we may show that the shape parameter beta

126

is the slope of the linear function Y = BX+A
when plotted on Weibull probability paper
(ordinate-log log and abscissa-log) as fol-

lows:
F(x) :1-e'(")3
=< (3)°
+ x
= g (a)
= i
-F 0
In 1n ——1-F (x)=B1n x-B 1n 6
letY =1n1n T
let X = 1n x
letA=-B1n6
letB =

then Y = BX+A

The probability density function of the two
parameter Weibull Function is:

pxA1 e'(i)ﬁ

f(x)=
Y 6B o
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