137 research outputs found

    Super-Earths: A New Class of Planetary Bodies

    Full text link
    Super-Earths, a class of planetary bodies with masses ranging from a few Earth-masses to slightly smaller than Uranus, have recently found a special place in the exoplanetary science. Being slightly larger than a typical terrestrial planet, super-Earths may have physical and dynamical characteristics similar to those of Earth whereas unlike terrestrial planets, they are relatively easier to detect. Because of their sizes, super-Earths can maintain moderate atmospheres and possibly dynamic interiors with plate tectonics. They also seem to be more common around low-mass stars where the habitable zone is in closer distances. This article presents a review of the current state of research on super-Earths, and discusses the models of the formation, dynamical evolution, and possible habitability of these objects. Given the recent advances in detection techniques, the detectability of super-Earths is also discussed, and a review of the prospects of their detection in the habitable zones of low-mass stars is presented.Comment: A (non-technical) review of the literature on the current state ofresearch on super-Earths. The topics include observation, formation, dynamical evolution, habitability, composition, interior dynamics, magnetic field, atmosphere, and propsect of detection. The article has 44 pages, 27 figures, and 203 references. It has been accepted for publication in the journal Contemporary Physics (2011

    Convection in colloidal suspensions with particle-concentration-dependent viscosity

    Full text link
    The onset of thermal convection in a horizontal layer of a colloidal suspension is investigated in terms of a continuum model for binary-fluid mixtures where the viscosity depends on the local concentration of colloidal particles. With an increasing difference between the viscosity at the warmer and the colder boundary the threshold of convection is reduced in the range of positive values of the separation ratio psi with the onset of stationary convection as well as in the range of negative values of psi with an oscillatory Hopf bifurcation. Additionally the convection rolls are shifted downwards with respect to the center of the horizontal layer for stationary convection (psi>0) and upwards for the Hopf bifurcation (psi<0).Comment: 8 pages, 6 figures, submitted to European Physical Journal

    Ariel planetary interiors White Paper

    Get PDF
    The recently adopted Ariel ESA mission will measure the atmospheric composition of a large number of exoplanets. This information will then be used to better constrain planetary bulk compositions. While the connection between the composition of a planetary atmosphere and the bulk interior is still being investigated, the combination of the atmospheric composition with the measured mass and radius of exoplanets will push the field of exoplanet characterisation to the next level, and provide new insights of the nature of planets in our galaxy. In this white paper, we outline the ongoing activities of the interior working group of the Ariel mission, and list the desirable theoretical developments as well as the challenges in linking planetary atmospheres, bulk composition and interior structure

    Subduction controls the distribution and fragmentation of Earth’s tectonic plates

    Get PDF
    International audienceThe theory of plate tectonics describes how the surface of the Earth is split into an organized jigsaw of seven large plates 1 of similar sizes and a population of smaller plates, whose areas follow a fractal distribution 2,3. The reconstruction of global tectonics during the past 200 My 4 suggests that this layout is probably a long-term feature of our planet, but the forces governing it are unknown. Previous studies 3,5,6 , primarily based on statistical properties of plate distributions, were unable to resolve how the size of plates is determined by lithosphere properties and/or underlying mantle convection. Here, we demonstrate that the plate layout of the Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using 3D spherical models of mantle convection with plate-like behaviour that match the plate size-frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between slabs controls the layout of large plates, and the stresses caused by the bending of trenches, break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates 7,8 reflects the dramatic changes in plate motions during times of major reorganizations. Our study opens the way to use convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected

    Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers

    Get PDF
    In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord

    Hydrous upwelling across the mantle transition zone beneath the Afar Triple Junction

    Get PDF
    The mechanisms that drive the upwelling of chemical heterogeneity from the lower to upper mantle (e.g., thermal versus compositional buoyancy) are key to our understanding of whole mantle con- vective processes. We address these issues through a receiver function study on new seismic data from recent deployments located on the Afar Triple Junction, a location associated with deep mantle upwelling. The detailed images of upper mantle and mantle transition zone structure illuminate features that give insights into the nature of upwelling from the deep Earth. A seismic low-velocity layer directly above the mantle transition zone, interpreted as a stable melt layer, along with a prominent 520 km discontinuity sug- gest the presence of a hydrous upwelling. A relatively uniform transition zone thickness across the region suggests a weak thermal anomaly (<100 K) may be present and that upwelling must be at least partly driven by compositional buoyancy. The results suggest that the lower mantle is a source of volatile rich, chemically distinct upwellings that influence the structure of the upper mantle, and potentially the chemis- try of surface lavas

    Generic acquisition protocol for quantitative MRI of the spinal cord

    Get PDF
    Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols. The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition
    • 

    corecore